@@ -27,10 +27,10 @@ def instance_norm(x):
27
27
def general_conv2d (inputconv , o_d = 64 , f_h = 7 , f_w = 7 , s_h = 1 , s_w = 1 , stddev = 0.02 , padding = "VALID" , name = "conv2d" , do_norm = True , do_relu = True , relufactor = 0 ):
28
28
with tf .variable_scope (name ):
29
29
30
- conv = tf .contrib .layers .conv2d (inputconv , o_d , f_w , s_w , padding , activation_fn = None , weights_initializer = tf .truncated_normal_initializer (stddev = stddev ),biases_initializer = None )
30
+ conv = tf .contrib .layers .conv2d (inputconv , o_d , f_w , s_w , padding , activation_fn = None , weights_initializer = tf .truncated_normal_initializer (stddev = stddev ),biases_initializer = tf . constant_initializer ( 0.0 ) )
31
31
if do_norm :
32
- # conv = instance_norm(conv)
33
- conv = tf .contrib .layers .batch_norm (conv , decay = 0.9 , updates_collections = None , epsilon = 1e-5 , scale = True , scope = "batch_norm" )
32
+ conv = instance_norm (conv )
33
+ # conv = tf.contrib.layers.batch_norm(conv, decay=0.9, updates_collections=None, epsilon=1e-5, scale=True, scope="batch_norm")
34
34
35
35
if do_relu :
36
36
if (relufactor == 0 ):
@@ -45,11 +45,11 @@ def general_conv2d(inputconv, o_d=64, f_h=7, f_w=7, s_h=1, s_w=1, stddev=0.02, p
45
45
def general_deconv2d (inputconv , outshape , o_d = 64 , f_h = 7 , f_w = 7 , s_h = 1 , s_w = 1 , stddev = 0.02 , padding = "VALID" , name = "deconv2d" , do_norm = True , do_relu = True , relufactor = 0 ):
46
46
with tf .variable_scope (name ):
47
47
48
- conv = tf .contrib .layers .conv2d_transpose (inputconv , o_d , [f_h , f_w ], [s_h , s_w ], padding , activation_fn = None , weights_initializer = tf .truncated_normal_initializer (stddev = stddev ),biases_initializer = None )
48
+ conv = tf .contrib .layers .conv2d_transpose (inputconv , o_d , [f_h , f_w ], [s_h , s_w ], padding , activation_fn = None , weights_initializer = tf .truncated_normal_initializer (stddev = stddev ),biases_initializer = tf . constant_initializer ( 0.0 ) )
49
49
50
50
if do_norm :
51
- # conv = instance_norm(conv)
52
- conv = tf .contrib .layers .batch_norm (conv , decay = 0.9 , updates_collections = None , epsilon = 1e-5 , scale = True , scope = "batch_norm" )
51
+ conv = instance_norm (conv )
52
+ # conv = tf.contrib.layers.batch_norm(conv, decay=0.9, updates_collections=None, epsilon=1e-5, scale=True, scope="batch_norm")
53
53
54
54
if do_relu :
55
55
if (relufactor == 0 ):
0 commit comments