-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathaco.py
211 lines (174 loc) · 7.44 KB
/
aco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import torch
from torch.distributions import Categorical
import random
import itertools
import numpy as np
import numba
from functools import cached_property
CAPACITY = 150
@numba.njit()
def count_last_zero(x: np.ndarray):
ret = np.zeros(len(x),)
n, m = x.shape
for i in range(n):
count = 0
for j in range(m-1, -1, -1):
if x[i][j] == 0:
count += 1
else:
ret[i] = count
break
return ret
@numba.njit()
def cal_fitness(s: np.ndarray, demand: np.ndarray, n_bins: np.ndarray):
ret = np.zeros(len(s),)
n, m = s.shape
for i in range(n):
f = 0
sub_f = 0
for j in range(1, m):
if s[i, j] != 0: # not dummy node
sub_f += demand[s[i, j]]
else:
f += (sub_f / CAPACITY)**2
sub_f = 0
ret[i] = f / n_bins[i]
return ret
class ACO():
# Levine, J., & Ducatelle, F. (2004). Ant colony optimization and local search for bin packing and cutting stock problems.
# Journal of the Operational Research society, 55(7), 705-716.
def __init__(self, # 0: depot
demand, # (n, )
n_ants=20,
decay=0.9,
alpha=1,
beta=1,
elitist=False,
pheromone=None,
heuristic=None,
device='cpu',
capacity=CAPACITY
):
self.problem_size = len(demand)
self.capacity = capacity
self.demand = demand
self.n_ants = n_ants
self.decay = decay
self.alpha = alpha
self.beta = beta
self.elitist = elitist
self.pheromone = torch.ones(self.problem_size, self.problem_size) if pheromone is None else pheromone
self.heuristic = self.demand.unsqueeze(0).repeat(len(demand), 1) if heuristic is None else heuristic
self.heuristic[:, 0] = 1e-5
self.shortest_path = None
self.best_fitness = 0
self.device = device
def sample(self):
paths, log_probs = self.gen_path(require_prob=True)
costs = self.gen_path_costs(paths)
return costs, log_probs
@torch.no_grad()
def run(self, n_iterations):
for _ in range(n_iterations):
paths = self.gen_path(require_prob=False)
costs = self.gen_path_costs(paths)
best_cost, best_idx = costs.min(dim=0)
if - best_cost > self.best_fitness:
self.shortest_path = paths[:, best_idx]
self.best_fitness = - best_cost
self.update_pheronome(paths, -costs)
return self.best_fitness
@torch.no_grad()
def update_pheronome(self, paths, fits):
'''
Args:
paths: torch tensor with shape (problem_size, n_ants)
costs: torch tensor with shape (n_ants,)
'''
self.pheromone = self.pheromone * self.decay
if self.elitist:
best_fit, best_idx = fits.max(dim=0)
best_tour = paths[:, best_idx]
self.pheromone[best_tour[:-1], torch.roll(best_tour, shifts=-1)[:-1]] += best_fit
else:
for i in range(self.n_ants):
path = paths[:, i]
fit = fits[i]
self.pheromone[path[:-1], torch.roll(path, shifts=-1)[:-1]] += fit / self.n_ants
self.pheromone[self.pheromone < 1e-10] = 1e-10
@torch.no_grad()
def gen_path_costs(self, paths:torch.Tensor):
u = paths.permute(1, 0).numpy() # shape: (n_ants, max_seq_len)
last_zeros = count_last_zero(u)
n_bins = u.shape[1] - last_zeros - self.problem_size + 1 # number of bins
fit = cal_fitness(u, self.demand_numpy, n_bins)
return -torch.tensor(fit)
def gen_path(self, require_prob=False):
actions = torch.zeros((self.n_ants,), dtype=torch.long, device=self.device)
visit_mask = torch.ones(size=(self.n_ants, self.problem_size), device=self.device)
visit_mask = self.update_visit_mask(visit_mask, actions)
used_capacity = torch.zeros(size=(self.n_ants,), device=self.device)
used_capacity, capacity_mask = self.update_capacity_mask(actions, used_capacity)
paths_list = [actions] # paths_list[i] is the ith move (tensor) for all ants
log_probs_list = [] # log_probs_list[i] is the ith log_prob (tensor) for all ants' actions
done = self.check_done(visit_mask, actions)
while not done:
actions, log_probs = self.pick_move(actions, visit_mask, capacity_mask, require_prob)
paths_list.append(actions)
if require_prob:
log_probs_list.append(log_probs)
visit_mask = visit_mask.clone()
visit_mask = self.update_visit_mask(visit_mask, actions)
used_capacity, capacity_mask = self.update_capacity_mask(actions, used_capacity)
done = self.check_done(visit_mask, actions)
if require_prob:
return torch.stack(paths_list), torch.stack(log_probs_list)
else:
return torch.stack(paths_list)
def pick_move(self, prev, visit_mask, capacity_mask, require_prob):
pheromone = self.pheromone[prev] # shape: (n_ants, p_size)
heuristic = self.heuristic[prev] # shape: (n_ants, p_size)
dist = ((pheromone ** self.alpha) * (heuristic ** self.beta) * visit_mask * capacity_mask) # shape: (n_ants, p_size)
dist = Categorical(dist)
actions = dist.sample() # shape: (n_ants,)
log_probs = dist.log_prob(actions) if require_prob else None # shape: (n_ants,)
return actions, log_probs
def update_visit_mask(self, visit_mask, actions):
visit_mask[torch.arange(self.n_ants, device=self.device), actions] = 0
visit_mask[:, 0] = 1 # depot can be revisited with one exception
visit_mask[(actions==0) * (visit_mask[:, 1:]!=0).any(dim=1), 0] = 0 # one exception is here
return visit_mask
def update_capacity_mask(self, cur_nodes, used_capacity):
'''
Args:
cur_nodes: shape (n_ants, )
used_capacity: shape (n_ants, )
capacity_mask: shape (n_ants, p_size)
Returns:
ant_capacity: updated capacity
capacity_mask: updated mask
'''
capacity_mask = torch.ones(size=(self.n_ants, self.problem_size), device=self.device)
# update capacity
used_capacity[cur_nodes==0] = 0
used_capacity = used_capacity + self.demand[cur_nodes]
# update capacity_mask
remaining_capacity = self.capacity - used_capacity # (n_ants,)
remaining_capacity_repeat = remaining_capacity.unsqueeze(-1).repeat(1, self.problem_size) # (n_ants, p_size)
demand_repeat = self.demand.unsqueeze(0).repeat(self.n_ants, 1) # (n_ants, p_size)
capacity_mask[demand_repeat > remaining_capacity_repeat] = 0
return used_capacity, capacity_mask
def check_done(self, visit_mask, actions):
return (visit_mask[:, 1:] == 0).all() and (actions == 0).all()
@cached_property
def demand_numpy(self):
return self.demand.cpu().numpy()
if __name__=="__main__":
from utils import gen_instance
n=120
demands = gen_instance(n, 'cpu')
aco = ACO(
demand=demands,
n_ants=20
)
aco.run(100)