-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtest.py
115 lines (95 loc) · 3.65 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import time
import torch
from net import Net
from aco import ACO, get_subroutes
from utils import load_test_dataset
from tqdm import tqdm
from typing import Tuple, Union, List
torch.manual_seed(1234)
EPS = 1e-10
if torch.cuda.is_available():
device = 'cuda:0'
else:
device = 'cpu'
def validate_route(distance: torch.Tensor, demands: torch.Tensor, routes: List[torch.Tensor]) -> Tuple[bool, float]:
length = 0.0
valid = True
visited = {0}
for r in routes:
d = demands[r].sum().item()
if d>1.000001:
valid = False
length += distance[r[:-1], r[1:]].sum().item()
for i in r:
i = i.item()
if i<0 or i>=distance.size(0):
valid = False
else:
visited.add(i)
if len(visited) != distance.size(0):
valid = False
return valid, length
@torch.no_grad()
def infer_instance(model, pyg_data, demands, distances, positions, n_ants, t_aco_diff, k_sparse=None):
model.eval()
heu_vec = model(pyg_data)
heu_mat = model.reshape(pyg_data, heu_vec) + EPS
aco = ACO(
n_ants=n_ants,
heuristic=heu_mat.cpu(),
demand = demands.cpu(),
distances=distances.cpu(),
device='cpu',
swapstar=True,
positions=positions.cpu(),
inference=True,
)
results = torch.zeros(size=(len(t_aco_diff),))
for i, t in enumerate(t_aco_diff):
aco.run(t, inference = True)
path = get_subroutes(aco.shortest_path)
valid, results[i] = validate_route(distances, demands, path)
if valid is False:
print("invalid solution.")
return results
@torch.no_grad()
def test(dataset, model, n_ants, t_aco, k_sparse=None):
_t_aco = [0] + t_aco
t_aco_diff = [_t_aco[i+1]-_t_aco[i] for i in range(len(_t_aco)-1)]
sum_results = torch.zeros(size=(len(t_aco_diff),))
start = time.time()
for pyg_data, demands, distances, positions in tqdm(dataset):
results = infer_instance(model, pyg_data, demands, distances, positions, n_ants, t_aco_diff, k_sparse)
sum_results += results
end = time.time()
return sum_results / len(dataset), end-start
def main(n_node, model_file, k_sparse = None, n_ants=20, t_aco = None):
k_sparse = k_sparse or n_node//10
t_aco = list(range(1, t_aco+1)) if t_aco else list(range(1,11))
test_list = load_test_dataset(n_node, k_sparse, device)
# test_list = load_val_dataset(n_node, k_sparse, device)
print("problem scale:", n_node)
print("checkpoint:", model_file)
print("number of instances:", len(test_list))
print("device:", 'cpu' if device == 'cpu' else device+"+cpu" )
print("n_ants:", n_ants)
net_tsp = Net().to(device)
net_tsp.load_state_dict(torch.load(model_file, map_location=device))
avg_aco_best, duration = test(test_list, net_tsp, n_ants, t_aco, k_sparse)
print('total duration: ', duration)
for i, t in enumerate(t_aco):
print("T={}, average cost is {}.".format(t, avg_aco_best[i]))
if __name__ == "__main__":
import argparse
import os
parser = argparse.ArgumentParser()
parser.add_argument("nodes", type=int, help="Problem scale")
parser.add_argument("-m", "--model", type=str, default=None, help="Path to checkpoint file.")
parser.add_argument("-i", "--iterations", type=int, default=None, help="Iterations of ACO to run")
opt = parser.parse_args()
n_nodes = opt.nodes
filepath = opt.model or f'../pretrained/cvrp_nls/cvrp{n_nodes}.pt'
if not os.path.isfile(filepath):
print(f"Checkpoint file '{filepath}' not found!")
exit(1)
main(n_nodes, filepath, t_aco=opt.iterations)