-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsave_test_submission.py
57 lines (47 loc) · 2.26 KB
/
save_test_submission.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
import pickle
import json
import numpy as np
import sys
from ogb.lsc import WikiKG90MDataset, WikiKG90MEvaluator
import pdb
from collections import defaultdict
import torch.nn.functional as F
import torch
# python save_test_submission.py $SAVE_PATH $NUM_PROC
if __name__ == '__main__':
path = sys.argv[1]
num_proc = int(sys.argv[2])
all_file_names = os.listdir(path)
test_file_names = [name for name in all_file_names if '.pkl' in name and 'test' in name]
valid_file_names = [name for name in all_file_names if '.pkl' in name and 'valid' in name]
steps = [int(name.split('.')[0].split('_')[-1]) for name in valid_file_names if 'valid_0' in name]
steps.sort()
evaluator = WikiKG90MEvaluator()
device = torch.device('cpu')
all_test_dicts = []
best_valid_mrr = -1
best_valid_idx = -1
for i, step in enumerate(steps):
valid_result_dict = defaultdict(lambda: defaultdict(list))
test_result_dict = defaultdict(lambda: defaultdict(list))
for proc in range(num_proc):
valid_result_dict_proc = torch.load(os.path.join(path, "valid_{}_{}.pkl".format(proc, step)), map_location=device)
test_result_dict_proc = torch.load(os.path.join(path, "test_{}_{}.pkl".format(proc, step)), map_location=device)
for result_dict_proc, result_dict in zip([valid_result_dict_proc, test_result_dict_proc], [valid_result_dict, test_result_dict]):
for key in result_dict_proc['h,r->t']:
result_dict['h,r->t'][key].append(result_dict_proc['h,r->t'][key].numpy())
for result_dict in [valid_result_dict, test_result_dict]:
for key in result_dict['h,r->t']:
result_dict['h,r->t'][key] = np.concatenate(result_dict['h,r->t'][key], 0)
all_test_dicts.append(test_result_dict)
metrics = evaluator.eval(valid_result_dict)
metric = 'mrr'
# print("valid-{} at step {}: {}".format(metric, step, metrics[metric]))
print(metrics[metric])
# print(step)
if metrics[metric] > best_valid_mrr:
best_valid_mrr = metrics[metric]
best_valid_idx = i
best_test_dict = all_test_dicts[best_valid_idx]
evaluator.save_test_submission(best_test_dict, path)