-
Notifications
You must be signed in to change notification settings - Fork 64
/
inference_core.py
293 lines (240 loc) · 11 KB
/
inference_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
"""
Heart of most evaluation scripts (DAVIS semi-sup/interactive, GUI)
Handles propagation and fusion
See eval_semi_davis.py / eval_interactive_davis.py for examples
"""
import torch
import numpy as np
import cv2
from model.propagation.prop_net import PropagationNetwork
from model.fusion_net import FusionNet
from model.aggregate import aggregate_sbg, aggregate_wbg
from util.tensor_util import pad_divide_by
class InferenceCore:
"""
images - leave them in original dimension (unpadded), but do normalize them.
Should be CPU tensors of shape B*T*3*H*W
mem_profile - How extravagant I can use the GPU memory.
Usually more memory -> faster speed but I have not drawn the exact relation
0 - Use the most memory
1 - Intermediate, larger buffer
2 - Intermediate, small buffer
3 - Use the minimal amount of GPU memory
Note that *none* of the above options will affect the accuracy
This is a space-time tradeoff, not a space-performance one
mem_freq - Period at which new memory are put in the bank
Higher number -> less memory usage
Unlike the last option, this *is* a space-performance tradeoff
"""
def __init__(self, prop_net:PropagationNetwork, fuse_net:FusionNet, images, num_objects,
mem_profile=0, mem_freq=5, device='cuda:0'):
self.prop_net = prop_net.to(device, non_blocking=True)
if fuse_net is not None:
self.fuse_net = fuse_net.to(device, non_blocking=True)
self.mem_profile = mem_profile
self.mem_freq = mem_freq
self.device = device
if mem_profile == 0:
self.data_dev = device
self.result_dev = device
self.q_buf_size = 105
self.i_buf_size = -1 # no need to buffer image
elif mem_profile == 1:
self.data_dev = 'cpu'
self.result_dev = device
self.q_buf_size = 105
self.i_buf_size = 105
elif mem_profile == 2:
self.data_dev = 'cpu'
self.result_dev = 'cpu'
self.q_buf_size = 3
self.i_buf_size = 3
else:
self.data_dev = 'cpu'
self.result_dev = 'cpu'
self.q_buf_size = 1
self.i_buf_size = 1
# True dimensions
t = images.shape[1]
h, w = images.shape[-2:]
self.k = num_objects
# Pad each side to multiples of 16
self.images, self.pad = pad_divide_by(images, 16, images.shape[-2:])
# Padded dimensions
nh, nw = self.images.shape[-2:]
self.images = self.images.to(self.data_dev, non_blocking=False)
# These two store the same information in different formats
self.masks = torch.zeros((t, 1, nh, nw), dtype=torch.uint8, device=self.result_dev)
self.np_masks = np.zeros((t, h, w), dtype=np.uint8)
# Object probabilities, background included
self.prob = torch.zeros((self.k+1, t, 1, nh, nw), dtype=torch.float32, device=self.result_dev)
self.prob[0] = 1e-7
self.t, self.h, self.w = t, h, w
self.nh, self.nw = nh, nw
self.kh = self.nh//16
self.kw = self.nw//16
self.query_buf = {}
self.image_buf = {}
self.interacted = set()
self.certain_mem_k = None
self.certain_mem_v = None
def get_image_buffered(self, idx):
if self.data_dev == self.device:
return self.images[:,idx]
# buffer the .cuda() calls
if idx not in self.image_buf:
# Flush buffer
if len(self.image_buf) > self.i_buf_size:
self.image_buf = {}
self.image_buf[idx] = self.images[:,idx].to(self.device)
result = self.image_buf[idx]
return result
def get_query_kv_buffered(self, idx):
# Queries' key/value never change, so we can buffer them here
if idx not in self.query_buf:
# Flush buffer
if len(self.query_buf) > self.q_buf_size:
self.query_buf = {}
self.query_buf[idx] = self.prop_net.get_query_values(self.get_image_buffered(idx))
result = self.query_buf[idx]
return result
def do_pass(self, key_k, key_v, idx, forward=True, step_cb=None):
"""
Do a complete pass that includes propagation and fusion
key_k/key_v - memory feature of the starting frame
idx - Frame index of the starting frame
forward - forward/backward propagation
step_cb - Callback function used for GUI (progress bar) only
"""
# Pointer in the memory bank
num_certain_keys = self.certain_mem_k.shape[2]
m_front = num_certain_keys
# Determine the required size of the memory bank
if forward:
closest_ti = min([ti for ti in self.interacted if ti > idx] + [self.t])
total_m = (closest_ti - idx - 1)//self.mem_freq + 1 + num_certain_keys
else:
closest_ti = max([ti for ti in self.interacted if ti < idx] + [-1])
total_m = (idx - closest_ti - 1)//self.mem_freq + 1 + num_certain_keys
K, CK, _, H, W = key_k.shape
_, CV, _, _, _ = key_v.shape
# Pre-allocate keys/values memory
keys = torch.empty((K, CK, total_m, H, W), dtype=torch.float32, device=self.device)
values = torch.empty((K, CV, total_m, H, W), dtype=torch.float32, device=self.device)
# Initial key/value passed in
keys[:,:,0:num_certain_keys] = self.certain_mem_k
values[:,:,0:num_certain_keys] = self.certain_mem_v
prev_in_mem = True
last_ti = idx
# Note that we never reach closest_ti, just the frame before it
if forward:
this_range = range(idx+1, closest_ti)
step = +1
end = closest_ti - 1
else:
this_range = range(idx-1, closest_ti, -1)
step = -1
end = closest_ti + 1
for ti in this_range:
if prev_in_mem:
this_k = keys[:,:,:m_front]
this_v = values[:,:,:m_front]
else:
this_k = keys[:,:,:m_front+1]
this_v = values[:,:,:m_front+1]
query = self.get_query_kv_buffered(ti)
out_mask = self.prop_net.segment_with_query(this_k, this_v, *query)
out_mask = aggregate_wbg(out_mask, keep_bg=True)
if ti != end:
keys[:,:,m_front:m_front+1], values[:,:,m_front:m_front+1] = self.prop_net.memorize(
self.get_image_buffered(ti), out_mask[1:])
if abs(ti-last_ti) >= self.mem_freq:
# Memorize the frame
m_front += 1
last_ti = ti
prev_in_mem = True
else:
prev_in_mem = False
# In-place fusion, maximizes the use of queried buffer
# esp. for long sequence where the buffer will be flushed
if (closest_ti != self.t) and (closest_ti != -1):
self.prob[:,ti] = self.fuse_one_frame(closest_ti, idx, ti, self.prob[:,ti], out_mask,
key_k, query[3]).to(self.result_dev)
else:
self.prob[:,ti] = out_mask.to(self.result_dev)
# Callback function for the GUI
if step_cb is not None:
step_cb()
return closest_ti
def fuse_one_frame(self, tc, tr, ti, prev_mask, curr_mask, mk16, qk16):
assert(tc<ti<tr or tr<ti<tc)
prob = torch.zeros((self.k, 1, self.nh, self.nw), dtype=torch.float32, device=self.device)
# Compute linear coefficients
nc = abs(tc-ti) / abs(tc-tr)
nr = abs(tr-ti) / abs(tc-tr)
dist = torch.FloatTensor([nc, nr]).to(self.device).unsqueeze(0)
for k in range(1, self.k+1):
attn_map = self.prop_net.get_attention(mk16[k-1:k], self.pos_mask_diff[k:k+1], self.neg_mask_diff[k:k+1], qk16)
w = torch.sigmoid(self.fuse_net(self.get_image_buffered(ti),
prev_mask[k:k+1].to(self.device), curr_mask[k:k+1].to(self.device), attn_map, dist))
prob[k-1] = w
return aggregate_wbg(prob, keep_bg=True)
def interact(self, mask, idx, total_cb=None, step_cb=None):
"""
Interact -> Propagate -> Fuse
mask - One-hot mask of the interacted frame, background included
idx - Frame index of the interacted frame
total_cb, step_cb - Callback functions for the GUI
Return: all mask results in np format for DAVIS evaluation
"""
self.interacted.add(idx)
mask = mask.to(self.device)
mask, _ = pad_divide_by(mask, 16, mask.shape[-2:])
self.mask_diff = mask - self.prob[:, idx].to(self.device)
self.pos_mask_diff = self.mask_diff.clamp(0, 1)
self.neg_mask_diff = (-self.mask_diff).clamp(0, 1)
self.prob[:, idx] = mask
key_k, key_v = self.prop_net.memorize(self.get_image_buffered(idx), mask[1:])
if self.certain_mem_k is None:
self.certain_mem_k = key_k
self.certain_mem_v = key_v
else:
self.certain_mem_k = torch.cat([self.certain_mem_k, key_k], 2)
self.certain_mem_v = torch.cat([self.certain_mem_v, key_v], 2)
if total_cb is not None:
# Finds the total num. frames to process
front_limit = min([ti for ti in self.interacted if ti > idx] + [self.t])
back_limit = max([ti for ti in self.interacted if ti < idx] + [-1])
total_num = front_limit - back_limit - 2 # -1 for shift, -1 for center frame
if total_num > 0:
total_cb(total_num)
self.do_pass(key_k, key_v, idx, True, step_cb=step_cb)
self.do_pass(key_k, key_v, idx, False, step_cb=step_cb)
# This is a more memory-efficient argmax
for ti in range(self.t):
self.masks[ti] = torch.argmax(self.prob[:,ti], dim=0)
out_masks = self.masks
# Trim paddings
if self.pad[2]+self.pad[3] > 0:
out_masks = out_masks[:,:,self.pad[2]:-self.pad[3],:]
if self.pad[0]+self.pad[1] > 0:
out_masks = out_masks[:,:,:,self.pad[0]:-self.pad[1]]
self.np_masks = (out_masks.detach().cpu().numpy()[:,0]).astype(np.uint8)
return self.np_masks
def update_mask_only(self, prob_mask, idx):
"""
Interaction only, no propagation/fusion
prob_mask - mask of the interacted frame, background included
idx - Frame index of the interacted frame
Return: all mask results in np format for DAVIS evaluation
"""
mask = torch.argmax(prob_mask, 0)
self.masks[idx] = mask
# Mask - 1 * H * W
if self.pad[2]+self.pad[3] > 0:
mask = mask[:,self.pad[2]:-self.pad[3],:]
if self.pad[0]+self.pad[1] > 0:
mask = mask[:,:,self.pad[0]:-self.pad[1]]
mask = (mask.detach().cpu().numpy()[0]).astype(np.uint8)
self.np_masks[idx] = mask
return self.np_masks