Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Add dendrogram #6511

Draft
wants to merge 6 commits into
base: main
Choose a base branch
from
Draft

feat: Add dendrogram #6511

wants to merge 6 commits into from

Conversation

hoxbro
Copy link
Member

@hoxbro hoxbro commented Feb 18, 2025

resolves #6501

Still very much draft...

Screencast.From.2025-02-18.17-40-56.mp4
Details
import numpy as np
from scipy.cluster.hierarchy import dendrogram, linkage

import holoviews as hv

hv.extension("bokeh")

path_opts = dict(
    line_color="black",
    xaxis=None,
    yaxis=None,
    show_grid=False,
    show_title=False,
    show_frame=False,
    border=0,
    # padding=0,
    default_tools=[],
)
heatmap_opts = dict(
    width=700,
    height=400,
    border=0,
    xrotation=45,
    tools=["hover", "examine"],
    colorbar=True,
    colorbar_position="bottom",
    show_title=False,
)

hv.opts.defaults(
    # hv.opts.Path("dendrogram", **path_opts),
    hv.opts.HeatMap("dendrogram", **heatmap_opts),
    hv.opts.Layout("dendrogram", shared_axes=False, show_title=False),
)

def compute_linkage(dataset, dim, vdim):
    arrays, labels = [], []
    for k, v in dataset.groupby(dim, container_type=list, group_type=hv.Dataset):
        labels.append(k)
        arrays.append(v.dimension_values(vdim))
    X = np.vstack(arrays)
    X = np.ma.array(X, mask=np.logical_not(np.isfinite(X)))
    Z = linkage(X)
    ddata = dendrogram(Z, labels=labels, no_plot=True)
    ddata["mh"] = np.max(Z[:, 2])
    return ddata


def get_dendrogram(dataset, dim, vdim):
    if not isinstance(dim, list):
        dim = [dim]
    kdims = dataset.kdims
    dataset = hv.Dataset(dataset)
    sort_dims, dendros = [], []
    for i, d in enumerate(dim):
        ddata = compute_linkage(dataset, d, vdim)
        mh = ddata["mh"]
        order = [ddata["ivl"].index(v) for v in dataset.dimension_values(d)][::-1]
        sort_dim = f"sort{i}"
        dataset = dataset.add_dimension(sort_dim, 0, order)
        sort_dims.append(sort_dim)
        ivw = len(ddata["ivl"]) * 10
        dvw = mh * 1.05
        extents = (0, 0, ivw, dvw)
        dendro = hv.Dendrogram(
            zip(ddata["icoord"], ddata["dcoord"]),
            extents=extents,
        )
        dendros.append(dendro)
    if len(sort_dims) == 1:
        sort_dims = kdims[:1] + sort_dims
    vdims = [dataset.get_dimension(vdim), *[vd for vd in dataset.vdims if vd != vdim]]
    dataset = hv.HeatMap(dataset.sort(sort_dims).reindex(kdims), vdims=vdims, group="dendrogram")
    for dendro, opts in zip(dendros, [dict(width=80), dict(height=80)]):
        dataset = dataset << dendro.opts(**opts)
    return hv.Layout(dataset, group="dendrogram")


seed = np.random.default_rng(seed=1)

ndoverlay = hv.NdOverlay(
    {i: hv.Curve([(chr(65 + j), seed.random()) for j in range(10)]) for i in range(5)},
    kdims=["z"],
)
dataset_org = hv.Dataset(ndoverlay.dframe(), vdims=["y"])

dataset, dim, vdim = dataset_org, ["x", "z"], "y"
# dataset, dim, vdim = dataset_org, ["x"], "y"

kdims = dataset.kdims
dataset = hv.Dataset(dataset)
sort_dims, dendros = [], []
for i, d in enumerate(dim):
    ddata = compute_linkage(dataset, d, vdim)
    order = [ddata["ivl"].index(v) for v in dataset.dimension_values(d)][::-1]
    sort_dim = f"sort{i}"
    dataset = dataset.add_dimension(sort_dim, 0, order)
    sort_dims.append(sort_dim)

    icoord, ivl = np.asarray(ddata["icoord"]), np.asarray(ddata["ivl"])
    if ivl.dtype.kind == "U":
        ddata["icoord"] = icoord / 10
    else:
        x1, x2, y1, y2 = icoord.min(), icoord.max(), ivl.min(), ivl.max()
        ddata["icoord"] = (y2 - y1) / (x2 - x1) * (icoord - x1) + y1
    dendro = hv.Dendrogram(zip(ddata["icoord"], ddata["dcoord"]), kdims=[d, "dendro"])
    dendros.append(dendro)

vdims = [dataset.get_dimension(vdim), *[vd for vd in dataset.vdims if vd != vdim]]
heatmap = hv.HeatMap(dataset.sort(sort_dims).reindex(kdims), vdims=vdims, group="dendrogram")
for dendro in dendros:
    heatmap = heatmap << dendro

import panel as pn

pn.panel(heatmap.opts()).servable()

Copy link

codecov bot commented Feb 19, 2025

Codecov Report

Attention: Patch coverage is 17.97753% with 146 lines in your changes missing coverage. Please review.

Project coverage is 88.61%. Comparing base (01a80f2) to head (24a4209).

Files with missing lines Patch % Lines
holoviews/plotting/bokeh/path.py 12.28% 100 Missing ⚠️
holoviews/element/path.py 23.33% 46 Missing ⚠️
Additional details and impacted files
@@            Coverage Diff             @@
##             main    #6511      +/-   ##
==========================================
- Coverage   88.79%   88.61%   -0.19%     
==========================================
  Files         323      323              
  Lines       68940    69115     +175     
==========================================
+ Hits        61216    61245      +29     
- Misses       7724     7870     +146     

☔ View full report in Codecov by Sentry.
📢 Have feedback on the report? Share it here.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Add Dendrogram Element for hierarchical clustering
1 participant