From dfb59a32d26822546e4f6a3ed7dcd521fe1265da Mon Sep 17 00:00:00 2001 From: Deep-unlearning Date: Mon, 19 May 2025 12:35:44 +0200 Subject: [PATCH] Create fine-tune-csm --- _blog.yml | 17 +++++++++++++++++ fine-tune-csm.md | 38 ++++++++++++++++++++++++++++++++++++++ 2 files changed, 55 insertions(+) create mode 100644 fine-tune-csm.md diff --git a/_blog.yml b/_blog.yml index 6b7e2f4b0f..186a578181 100644 --- a/_blog.yml +++ b/_blog.yml @@ -6005,3 +6005,20 @@ - community - announcement - transformers + +- local: fine-tune-csm + title: "Fine-Tune CSM For Conversational Speech LLMs with 🤗 Transformers" + thumbnail: /blog/assets/112_fine_tune_csm/thumbnail.jpg + authors: + - user: eustlb + - user: reach-vb + - user: Steveeeeeeen + date: TBD + tags: + - csm + - conversational + - audio + - speech + - text-to-speech + - llm + - fine-tuning \ No newline at end of file diff --git a/fine-tune-csm.md b/fine-tune-csm.md new file mode 100644 index 0000000000..e6fd4a287f --- /dev/null +++ b/fine-tune-csm.md @@ -0,0 +1,38 @@ +--- +title: "Fine-Tune CSM For Conversational Speech LLMs with 🤗 Transformers" +thumbnail: /blog/assets/112_fine_tune_csm/thumbnail.jpg +authors: +- user: eustlb +- user: reach-vb +- user: Steveeeeeeen +--- + +# Fine-Tune CSM For Conversational Speech LLMs with 🤗 Transformers + +# To be updated + + Open In Colab + + + +In this blog, we present a step-by-step guide on fine-tuning CSM +for any conversational speech LLM dataset using Hugging Face 🤗 Transformers. This blog +provides in-depth explanations of the CSM model, the dataset and +the theory behind fine-tuning, with accompanying code cells to execute the data +preparation and fine-tuning steps. For a more streamlined version of the notebook +with fewer explanations but all the code, see the accompanying [Google Colab](). + + +## Table of Contents + +1. [Introduction](#introduction) +2. [Fine-tuning CSM in a Google Colab](#fine-tuning-csm-in-a-google-colab) + 1. [Prepare Environment](#prepare-environment) + 2. [Load Dataset](#load-dataset) + 3. [Prepare Feature Extractor, Tokenizer and Data](#prepare-feature-extractor-tokenizer-and-data) + 4. [Training and Evaluation](#training-and-evaluation) + 5. [Building a Demo](#building-a-demo) +3. [Closing Remarks](#closing-remarks) + +## Introduction +