-
Notifications
You must be signed in to change notification settings - Fork 228
/
Isaac.Newton-Opticks.txt
9286 lines (8471 loc) · 554 KB
/
Isaac.Newton-Opticks.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Produced by Suzanne Lybarger, steve harris, Josephine
Paolucci and the Online Distributed Proofreading Team at
http://www.pgdp.net.
OPTICKS:
OR, A
TREATISE
OF THE
_Reflections_, _Refractions_,
_Inflections_ and _Colours_
OF
LIGHT.
_The_ FOURTH EDITION, _corrected_.
By Sir _ISAAC NEWTON_, Knt.
LONDON:
Printed for WILLIAM INNYS at the West-End of St. _Paul's_. MDCCXXX.
TITLE PAGE OF THE 1730 EDITION
SIR ISAAC NEWTON'S ADVERTISEMENTS
Advertisement I
_Part of the ensuing Discourse about Light was written at the Desire of
some Gentlemen of the_ Royal-Society, _in the Year 1675, and then sent
to their Secretary, and read at their Meetings, and the rest was added
about twelve Years after to complete the Theory; except the third Book,
and the last Proposition of the Second, which were since put together
out of scatter'd Papers. To avoid being engaged in Disputes about these
Matters, I have hitherto delayed the printing, and should still have
delayed it, had not the Importunity of Friends prevailed upon me. If any
other Papers writ on this Subject are got out of my Hands they are
imperfect, and were perhaps written before I had tried all the
Experiments here set down, and fully satisfied my self about the Laws of
Refractions and Composition of Colours. I have here publish'd what I
think proper to come abroad, wishing that it may not be translated into
another Language without my Consent._
_The Crowns of Colours, which sometimes appear about the Sun and Moon, I
have endeavoured to give an Account of; but for want of sufficient
Observations leave that Matter to be farther examined. The Subject of
the Third Book I have also left imperfect, not having tried all the
Experiments which I intended when I was about these Matters, nor
repeated some of those which I did try, until I had satisfied my self
about all their Circumstances. To communicate what I have tried, and
leave the rest to others for farther Enquiry, is all my Design in
publishing these Papers._
_In a Letter written to Mr._ Leibnitz _in the year 1679, and published
by Dr._ Wallis, _I mention'd a Method by which I had found some general
Theorems about squaring Curvilinear Figures, or comparing them with the
Conic Sections, or other the simplest Figures with which they may be
compared. And some Years ago I lent out a Manuscript containing such
Theorems, and having since met with some Things copied out of it, I have
on this Occasion made it publick, prefixing to it an_ Introduction, _and
subjoining a_ Scholium _concerning that Method. And I have joined with
it another small Tract concerning the Curvilinear Figures of the Second
Kind, which was also written many Years ago, and made known to some
Friends, who have solicited the making it publick._
_I. N._
April 1, 1704.
Advertisement II
_In this Second Edition of these Opticks I have omitted the Mathematical
Tracts publish'd at the End of the former Edition, as not belonging to
the Subject. And at the End of the Third Book I have added some
Questions. And to shew that I do not take Gravity for an essential
Property of Bodies, I have added one Question concerning its Cause,
chusing to propose it by way of a Question, because I am not yet
satisfied about it for want of Experiments._
_I. N._
July 16, 1717.
Advertisement to this Fourth Edition
_This new Edition of Sir_ Isaac Newton's Opticks _is carefully printed
from the Third Edition, as it was corrected by the Author's own Hand,
and left before his Death with the Bookseller. Since Sir_ Isaac's
Lectiones Opticæ, _which he publickly read in the University of_
Cambridge _in the Years 1669, 1670, and 1671, are lately printed, it has
been thought proper to make at the bottom of the Pages several Citations
from thence, where may be found the Demonstrations, which the Author
omitted in these_ Opticks.
* * * * *
Transcriber's Note: There are several greek letters used in the
descriptions of the illustrations. They are signified by [Greek:
letter]. Square roots are noted by the letters sqrt before the equation.
* * * * *
THE FIRST BOOK OF OPTICKS
_PART I._
My Design in this Book is not to explain the Properties of Light by
Hypotheses, but to propose and prove them by Reason and Experiments: In
order to which I shall premise the following Definitions and Axioms.
_DEFINITIONS_
DEFIN. I.
_By the Rays of Light I understand its least Parts, and those as well
Successive in the same Lines, as Contemporary in several Lines._ For it
is manifest that Light consists of Parts, both Successive and
Contemporary; because in the same place you may stop that which comes
one moment, and let pass that which comes presently after; and in the
same time you may stop it in any one place, and let it pass in any
other. For that part of Light which is stopp'd cannot be the same with
that which is let pass. The least Light or part of Light, which may be
stopp'd alone without the rest of the Light, or propagated alone, or do
or suffer any thing alone, which the rest of the Light doth not or
suffers not, I call a Ray of Light.
DEFIN. II.
_Refrangibility of the Rays of Light, is their Disposition to be
refracted or turned out of their Way in passing out of one transparent
Body or Medium into another. And a greater or less Refrangibility of
Rays, is their Disposition to be turned more or less out of their Way in
like Incidences on the same Medium._ Mathematicians usually consider the
Rays of Light to be Lines reaching from the luminous Body to the Body
illuminated, and the refraction of those Rays to be the bending or
breaking of those lines in their passing out of one Medium into another.
And thus may Rays and Refractions be considered, if Light be propagated
in an instant. But by an Argument taken from the Æquations of the times
of the Eclipses of _Jupiter's Satellites_, it seems that Light is
propagated in time, spending in its passage from the Sun to us about
seven Minutes of time: And therefore I have chosen to define Rays and
Refractions in such general terms as may agree to Light in both cases.
DEFIN. III.
_Reflexibility of Rays, is their Disposition to be reflected or turned
back into the same Medium from any other Medium upon whose Surface they
fall. And Rays are more or less reflexible, which are turned back more
or less easily._ As if Light pass out of a Glass into Air, and by being
inclined more and more to the common Surface of the Glass and Air,
begins at length to be totally reflected by that Surface; those sorts of
Rays which at like Incidences are reflected most copiously, or by
inclining the Rays begin soonest to be totally reflected, are most
reflexible.
DEFIN. IV.
_The Angle of Incidence is that Angle, which the Line described by the
incident Ray contains with the Perpendicular to the reflecting or
refracting Surface at the Point of Incidence._
DEFIN. V.
_The Angle of Reflexion or Refraction, is the Angle which the line
described by the reflected or refracted Ray containeth with the
Perpendicular to the reflecting or refracting Surface at the Point of
Incidence._
DEFIN. VI.
_The Sines of Incidence, Reflexion, and Refraction, are the Sines of the
Angles of Incidence, Reflexion, and Refraction._
DEFIN. VII
_The Light whose Rays are all alike Refrangible, I call Simple,
Homogeneal and Similar; and that whose Rays are some more Refrangible
than others, I call Compound, Heterogeneal and Dissimilar._ The former
Light I call Homogeneal, not because I would affirm it so in all
respects, but because the Rays which agree in Refrangibility, agree at
least in all those their other Properties which I consider in the
following Discourse.
DEFIN. VIII.
_The Colours of Homogeneal Lights, I call Primary, Homogeneal and
Simple; and those of Heterogeneal Lights, Heterogeneal and Compound._
For these are always compounded of the colours of Homogeneal Lights; as
will appear in the following Discourse.
_AXIOMS._
AX. I.
_The Angles of Reflexion and Refraction, lie in one and the same Plane
with the Angle of Incidence._
AX. II.
_The Angle of Reflexion is equal to the Angle of Incidence._
AX. III.
_If the refracted Ray be returned directly back to the Point of
Incidence, it shall be refracted into the Line before described by the
incident Ray._
AX. IV.
_Refraction out of the rarer Medium into the denser, is made towards the
Perpendicular; that is, so that the Angle of Refraction be less than the
Angle of Incidence._
AX. V.
_The Sine of Incidence is either accurately or very nearly in a given
Ratio to the Sine of Refraction._
Whence if that Proportion be known in any one Inclination of the
incident Ray, 'tis known in all the Inclinations, and thereby the
Refraction in all cases of Incidence on the same refracting Body may be
determined. Thus if the Refraction be made out of Air into Water, the
Sine of Incidence of the red Light is to the Sine of its Refraction as 4
to 3. If out of Air into Glass, the Sines are as 17 to 11. In Light of
other Colours the Sines have other Proportions: but the difference is so
little that it need seldom be considered.
[Illustration: FIG. 1]
Suppose therefore, that RS [in _Fig._ 1.] represents the Surface of
stagnating Water, and that C is the point of Incidence in which any Ray
coming in the Air from A in the Line AC is reflected or refracted, and I
would know whither this Ray shall go after Reflexion or Refraction: I
erect upon the Surface of the Water from the point of Incidence the
Perpendicular CP and produce it downwards to Q, and conclude by the
first Axiom, that the Ray after Reflexion and Refraction, shall be
found somewhere in the Plane of the Angle of Incidence ACP produced. I
let fall therefore upon the Perpendicular CP the Sine of Incidence AD;
and if the reflected Ray be desired, I produce AD to B so that DB be
equal to AD, and draw CB. For this Line CB shall be the reflected Ray;
the Angle of Reflexion BCP and its Sine BD being equal to the Angle and
Sine of Incidence, as they ought to be by the second Axiom, But if the
refracted Ray be desired, I produce AD to H, so that DH may be to AD as
the Sine of Refraction to the Sine of Incidence, that is, (if the Light
be red) as 3 to 4; and about the Center C and in the Plane ACP with the
Radius CA describing a Circle ABE, I draw a parallel to the
Perpendicular CPQ, the Line HE cutting the Circumference in E, and
joining CE, this Line CE shall be the Line of the refracted Ray. For if
EF be let fall perpendicularly on the Line PQ, this Line EF shall be the
Sine of Refraction of the Ray CE, the Angle of Refraction being ECQ; and
this Sine EF is equal to DH, and consequently in Proportion to the Sine
of Incidence AD as 3 to 4.
In like manner, if there be a Prism of Glass (that is, a Glass bounded
with two Equal and Parallel Triangular ends, and three plain and well
polished Sides, which meet in three Parallel Lines running from the
three Angles of one end to the three Angles of the other end) and if the
Refraction of the Light in passing cross this Prism be desired: Let ACB
[in _Fig._ 2.] represent a Plane cutting this Prism transversly to its
three Parallel lines or edges there where the Light passeth through it,
and let DE be the Ray incident upon the first side of the Prism AC where
the Light goes into the Glass; and by putting the Proportion of the Sine
of Incidence to the Sine of Refraction as 17 to 11 find EF the first
refracted Ray. Then taking this Ray for the Incident Ray upon the second
side of the Glass BC where the Light goes out, find the next refracted
Ray FG by putting the Proportion of the Sine of Incidence to the Sine of
Refraction as 11 to 17. For if the Sine of Incidence out of Air into
Glass be to the Sine of Refraction as 17 to 11, the Sine of Incidence
out of Glass into Air must on the contrary be to the Sine of Refraction
as 11 to 17, by the third Axiom.
[Illustration: FIG. 2.]
Much after the same manner, if ACBD [in _Fig._ 3.] represent a Glass
spherically convex on both sides (usually called a _Lens_, such as is a
Burning-glass, or Spectacle-glass, or an Object-glass of a Telescope)
and it be required to know how Light falling upon it from any lucid
point Q shall be refracted, let QM represent a Ray falling upon any
point M of its first spherical Surface ACB, and by erecting a
Perpendicular to the Glass at the point M, find the first refracted Ray
MN by the Proportion of the Sines 17 to 11. Let that Ray in going out of
the Glass be incident upon N, and then find the second refracted Ray
N_q_ by the Proportion of the Sines 11 to 17. And after the same manner
may the Refraction be found when the Lens is convex on one side and
plane or concave on the other, or concave on both sides.
[Illustration: FIG. 3.]
AX. VI.
_Homogeneal Rays which flow from several Points of any Object, and fall
perpendicularly or almost perpendicularly on any reflecting or
refracting Plane or spherical Surface, shall afterwards diverge from so
many other Points, or be parallel to so many other Lines, or converge to
so many other Points, either accurately or without any sensible Error.
And the same thing will happen, if the Rays be reflected or refracted
successively by two or three or more Plane or Spherical Surfaces._
The Point from which Rays diverge or to which they converge may be
called their _Focus_. And the Focus of the incident Rays being given,
that of the reflected or refracted ones may be found by finding the
Refraction of any two Rays, as above; or more readily thus.
_Cas._ 1. Let ACB [in _Fig._ 4.] be a reflecting or refracting Plane,
and Q the Focus of the incident Rays, and Q_q_C a Perpendicular to that
Plane. And if this Perpendicular be produced to _q_, so that _q_C be
equal to QC, the Point _q_ shall be the Focus of the reflected Rays: Or
if _q_C be taken on the same side of the Plane with QC, and in
proportion to QC as the Sine of Incidence to the Sine of Refraction, the
Point _q_ shall be the Focus of the refracted Rays.
[Illustration: FIG. 4.]
_Cas._ 2. Let ACB [in _Fig._ 5.] be the reflecting Surface of any Sphere
whose Centre is E. Bisect any Radius thereof, (suppose EC) in T, and if
in that Radius on the same side the Point T you take the Points Q and
_q_, so that TQ, TE, and T_q_, be continual Proportionals, and the Point
Q be the Focus of the incident Rays, the Point _q_ shall be the Focus of
the reflected ones.
[Illustration: FIG. 5.]
_Cas._ 3. Let ACB [in _Fig._ 6.] be the refracting Surface of any Sphere
whose Centre is E. In any Radius thereof EC produced both ways take ET
and C_t_ equal to one another and severally in such Proportion to that
Radius as the lesser of the Sines of Incidence and Refraction hath to
the difference of those Sines. And then if in the same Line you find any
two Points Q and _q_, so that TQ be to ET as E_t_ to _tq_, taking _tq_
the contrary way from _t_ which TQ lieth from T, and if the Point Q be
the Focus of any incident Rays, the Point _q_ shall be the Focus of the
refracted ones.
[Illustration: FIG. 6.]
And by the same means the Focus of the Rays after two or more Reflexions
or Refractions may be found.
[Illustration: FIG. 7.]
_Cas._ 4. Let ACBD [in _Fig._ 7.] be any refracting Lens, spherically
Convex or Concave or Plane on either side, and let CD be its Axis (that
is, the Line which cuts both its Surfaces perpendicularly, and passes
through the Centres of the Spheres,) and in this Axis produced let F and
_f_ be the Foci of the refracted Rays found as above, when the incident
Rays on both sides the Lens are parallel to the same Axis; and upon the
Diameter F_f_ bisected in E, describe a Circle. Suppose now that any
Point Q be the Focus of any incident Rays. Draw QE cutting the said
Circle in T and _t_, and therein take _tq_ in such proportion to _t_E as
_t_E or TE hath to TQ. Let _tq_ lie the contrary way from _t_ which TQ
doth from T, and _q_ shall be the Focus of the refracted Rays without
any sensible Error, provided the Point Q be not so remote from the Axis,
nor the Lens so broad as to make any of the Rays fall too obliquely on
the refracting Surfaces.[A]
And by the like Operations may the reflecting or refracting Surfaces be
found when the two Foci are given, and thereby a Lens be formed, which
shall make the Rays flow towards or from what Place you please.[B]
So then the Meaning of this Axiom is, that if Rays fall upon any Plane
or Spherical Surface or Lens, and before their Incidence flow from or
towards any Point Q, they shall after Reflexion or Refraction flow from
or towards the Point _q_ found by the foregoing Rules. And if the
incident Rays flow from or towards several points Q, the reflected or
refracted Rays shall flow from or towards so many other Points _q_
found by the same Rules. Whether the reflected and refracted Rays flow
from or towards the Point _q_ is easily known by the situation of that
Point. For if that Point be on the same side of the reflecting or
refracting Surface or Lens with the Point Q, and the incident Rays flow
from the Point Q, the reflected flow towards the Point _q_ and the
refracted from it; and if the incident Rays flow towards Q, the
reflected flow from _q_, and the refracted towards it. And the contrary
happens when _q_ is on the other side of the Surface.
AX. VII.
_Wherever the Rays which come from all the Points of any Object meet
again in so many Points after they have been made to converge by
Reflection or Refraction, there they will make a Picture of the Object
upon any white Body on which they fall._
So if PR [in _Fig._ 3.] represent any Object without Doors, and AB be a
Lens placed at a hole in the Window-shut of a dark Chamber, whereby the
Rays that come from any Point Q of that Object are made to converge and
meet again in the Point _q_; and if a Sheet of white Paper be held at
_q_ for the Light there to fall upon it, the Picture of that Object PR
will appear upon the Paper in its proper shape and Colours. For as the
Light which comes from the Point Q goes to the Point _q_, so the Light
which comes from other Points P and R of the Object, will go to so many
other correspondent Points _p_ and _r_ (as is manifest by the sixth
Axiom;) so that every Point of the Object shall illuminate a
correspondent Point of the Picture, and thereby make a Picture like the
Object in Shape and Colour, this only excepted, that the Picture shall
be inverted. And this is the Reason of that vulgar Experiment of casting
the Species of Objects from abroad upon a Wall or Sheet of white Paper
in a dark Room.
In like manner, when a Man views any Object PQR, [in _Fig._ 8.] the
Light which comes from the several Points of the Object is so refracted
by the transparent skins and humours of the Eye, (that is, by the
outward coat EFG, called the _Tunica Cornea_, and by the crystalline
humour AB which is beyond the Pupil _mk_) as to converge and meet again
in so many Points in the bottom of the Eye, and there to paint the
Picture of the Object upon that skin (called the _Tunica Retina_) with
which the bottom of the Eye is covered. For Anatomists, when they have
taken off from the bottom of the Eye that outward and most thick Coat
called the _Dura Mater_, can then see through the thinner Coats, the
Pictures of Objects lively painted thereon. And these Pictures,
propagated by Motion along the Fibres of the Optick Nerves into the
Brain, are the cause of Vision. For accordingly as these Pictures are
perfect or imperfect, the Object is seen perfectly or imperfectly. If
the Eye be tinged with any colour (as in the Disease of the _Jaundice_)
so as to tinge the Pictures in the bottom of the Eye with that Colour,
then all Objects appear tinged with the same Colour. If the Humours of
the Eye by old Age decay, so as by shrinking to make the _Cornea_ and
Coat of the _Crystalline Humour_ grow flatter than before, the Light
will not be refracted enough, and for want of a sufficient Refraction
will not converge to the bottom of the Eye but to some place beyond it,
and by consequence paint in the bottom of the Eye a confused Picture,
and according to the Indistinctness of this Picture the Object will
appear confused. This is the reason of the decay of sight in old Men,
and shews why their Sight is mended by Spectacles. For those Convex
glasses supply the defect of plumpness in the Eye, and by increasing the
Refraction make the Rays converge sooner, so as to convene distinctly at
the bottom of the Eye if the Glass have a due degree of convexity. And
the contrary happens in short-sighted Men whose Eyes are too plump. For
the Refraction being now too great, the Rays converge and convene in the
Eyes before they come at the bottom; and therefore the Picture made in
the bottom and the Vision caused thereby will not be distinct, unless
the Object be brought so near the Eye as that the place where the
converging Rays convene may be removed to the bottom, or that the
plumpness of the Eye be taken off and the Refractions diminished by a
Concave-glass of a due degree of Concavity, or lastly that by Age the
Eye grow flatter till it come to a due Figure: For short-sighted Men see
remote Objects best in Old Age, and therefore they are accounted to have
the most lasting Eyes.
[Illustration: FIG. 8.]
AX. VIII.
_An Object seen by Reflexion or Refraction, appears in that place from
whence the Rays after their last Reflexion or Refraction diverge in
falling on the Spectator's Eye._
[Illustration: FIG. 9.]
If the Object A [in FIG. 9.] be seen by Reflexion of a Looking-glass
_mn_, it shall appear, not in its proper place A, but behind the Glass
at _a_, from whence any Rays AB, AC, AD, which flow from one and the
same Point of the Object, do after their Reflexion made in the Points B,
C, D, diverge in going from the Glass to E, F, G, where they are
incident on the Spectator's Eyes. For these Rays do make the same
Picture in the bottom of the Eyes as if they had come from the Object
really placed at _a_ without the Interposition of the Looking-glass; and
all Vision is made according to the place and shape of that Picture.
In like manner the Object D [in FIG. 2.] seen through a Prism, appears
not in its proper place D, but is thence translated to some other place
_d_ situated in the last refracted Ray FG drawn backward from F to _d_.
[Illustration: FIG. 10.]
And so the Object Q [in FIG. 10.] seen through the Lens AB, appears at
the place _q_ from whence the Rays diverge in passing from the Lens to
the Eye. Now it is to be noted, that the Image of the Object at _q_ is
so much bigger or lesser than the Object it self at Q, as the distance
of the Image at _q_ from the Lens AB is bigger or less than the distance
of the Object at Q from the same Lens. And if the Object be seen through
two or more such Convex or Concave-glasses, every Glass shall make a new
Image, and the Object shall appear in the place of the bigness of the
last Image. Which consideration unfolds the Theory of Microscopes and
Telescopes. For that Theory consists in almost nothing else than the
describing such Glasses as shall make the last Image of any Object as
distinct and large and luminous as it can conveniently be made.
I have now given in Axioms and their Explications the sum of what hath
hitherto been treated of in Opticks. For what hath been generally
agreed on I content my self to assume under the notion of Principles, in
order to what I have farther to write. And this may suffice for an
Introduction to Readers of quick Wit and good Understanding not yet
versed in Opticks: Although those who are already acquainted with this
Science, and have handled Glasses, will more readily apprehend what
followeth.
FOOTNOTES:
[A] In our Author's _Lectiones Opticæ_, Part I. Sect. IV. Prop 29, 30,
there is an elegant Method of determining these _Foci_; not only in
spherical Surfaces, but likewise in any other curved Figure whatever:
And in Prop. 32, 33, the same thing is done for any Ray lying out of the
Axis.
[B] _Ibid._ Prop. 34.
_PROPOSITIONS._
_PROP._ I. THEOR. I.
_Lights which differ in Colour, differ also in Degrees of
Refrangibility._
The PROOF by Experiments.
_Exper._ 1.
I took a black oblong stiff Paper terminated by Parallel Sides, and with
a Perpendicular right Line drawn cross from one Side to the other,
distinguished it into two equal Parts. One of these parts I painted with
a red colour and the other with a blue. The Paper was very black, and
the Colours intense and thickly laid on, that the Phænomenon might be
more conspicuous. This Paper I view'd through a Prism of solid Glass,
whose two Sides through which the Light passed to the Eye were plane and
well polished, and contained an Angle of about sixty degrees; which
Angle I call the refracting Angle of the Prism. And whilst I view'd it,
I held it and the Prism before a Window in such manner that the Sides of
the Paper were parallel to the Prism, and both those Sides and the Prism
were parallel to the Horizon, and the cross Line was also parallel to
it: and that the Light which fell from the Window upon the Paper made an
Angle with the Paper, equal to that Angle which was made with the same
Paper by the Light reflected from it to the Eye. Beyond the Prism was
the Wall of the Chamber under the Window covered over with black Cloth,
and the Cloth was involved in Darkness that no Light might be reflected
from thence, which in passing by the Edges of the Paper to the Eye,
might mingle itself with the Light of the Paper, and obscure the
Phænomenon thereof. These things being thus ordered, I found that if the
refracting Angle of the Prism be turned upwards, so that the Paper may
seem to be lifted upwards by the Refraction, its blue half will be
lifted higher by the Refraction than its red half. But if the refracting
Angle of the Prism be turned downward, so that the Paper may seem to be
carried lower by the Refraction, its blue half will be carried something
lower thereby than its red half. Wherefore in both Cases the Light which
comes from the blue half of the Paper through the Prism to the Eye, does
in like Circumstances suffer a greater Refraction than the Light which
comes from the red half, and by consequence is more refrangible.
_Illustration._ In the eleventh Figure, MN represents the Window, and DE
the Paper terminated with parallel Sides DJ and HE, and by the
transverse Line FG distinguished into two halfs, the one DG of an
intensely blue Colour, the other FE of an intensely red. And BAC_cab_
represents the Prism whose refracting Planes AB_ba_ and AC_ca_ meet in
the Edge of the refracting Angle A_a_. This Edge A_a_ being upward, is
parallel both to the Horizon, and to the Parallel-Edges of the Paper DJ
and HE, and the transverse Line FG is perpendicular to the Plane of the
Window. And _de_ represents the Image of the Paper seen by Refraction
upwards in such manner, that the blue half DG is carried higher to _dg_
than the red half FE is to _fe_, and therefore suffers a greater
Refraction. If the Edge of the refracting Angle be turned downward, the
Image of the Paper will be refracted downward; suppose to [Greek: de],
and the blue half will be refracted lower to [Greek: dg] than the red
half is to [Greek: pe].
[Illustration: FIG. 11.]
_Exper._ 2. About the aforesaid Paper, whose two halfs were painted over
with red and blue, and which was stiff like thin Pasteboard, I lapped
several times a slender Thred of very black Silk, in such manner that
the several parts of the Thred might appear upon the Colours like so
many black Lines drawn over them, or like long and slender dark Shadows
cast upon them. I might have drawn black Lines with a Pen, but the
Threds were smaller and better defined. This Paper thus coloured and
lined I set against a Wall perpendicularly to the Horizon, so that one
of the Colours might stand to the Right Hand, and the other to the Left.
Close before the Paper, at the Confine of the Colours below, I placed a
Candle to illuminate the Paper strongly: For the Experiment was tried in
the Night. The Flame of the Candle reached up to the lower edge of the
Paper, or a very little higher. Then at the distance of six Feet, and
one or two Inches from the Paper upon the Floor I erected a Glass Lens
four Inches and a quarter broad, which might collect the Rays coming
from the several Points of the Paper, and make them converge towards so
many other Points at the same distance of six Feet, and one or two
Inches on the other side of the Lens, and so form the Image of the
coloured Paper upon a white Paper placed there, after the same manner
that a Lens at a Hole in a Window casts the Images of Objects abroad
upon a Sheet of white Paper in a dark Room. The aforesaid white Paper,
erected perpendicular to the Horizon, and to the Rays which fell upon it
from the Lens, I moved sometimes towards the Lens, sometimes from it, to
find the Places where the Images of the blue and red Parts of the
coloured Paper appeared most distinct. Those Places I easily knew by the
Images of the black Lines which I had made by winding the Silk about the
Paper. For the Images of those fine and slender Lines (which by reason
of their Blackness were like Shadows on the Colours) were confused and
scarce visible, unless when the Colours on either side of each Line were
terminated most distinctly, Noting therefore, as diligently as I could,
the Places where the Images of the red and blue halfs of the coloured
Paper appeared most distinct, I found that where the red half of the
Paper appeared distinct, the blue half appeared confused, so that the
black Lines drawn upon it could scarce be seen; and on the contrary,
where the blue half appeared most distinct, the red half appeared
confused, so that the black Lines upon it were scarce visible. And
between the two Places where these Images appeared distinct there was
the distance of an Inch and a half; the distance of the white Paper from
the Lens, when the Image of the red half of the coloured Paper appeared
most distinct, being greater by an Inch and an half than the distance of
the same white Paper from the Lens, when the Image of the blue half
appeared most distinct. In like Incidences therefore of the blue and red
upon the Lens, the blue was refracted more by the Lens than the red, so
as to converge sooner by an Inch and a half, and therefore is more
refrangible.
_Illustration._ In the twelfth Figure (p. 27), DE signifies the coloured
Paper, DG the blue half, FE the red half, MN the Lens, HJ the white
Paper in that Place where the red half with its black Lines appeared
distinct, and _hi_ the same Paper in that Place where the blue half
appeared distinct. The Place _hi_ was nearer to the Lens MN than the
Place HJ by an Inch and an half.
_Scholium._ The same Things succeed, notwithstanding that some of the
Circumstances be varied; as in the first Experiment when the Prism and
Paper are any ways inclined to the Horizon, and in both when coloured
Lines are drawn upon very black Paper. But in the Description of these
Experiments, I have set down such Circumstances, by which either the
Phænomenon might be render'd more conspicuous, or a Novice might more
easily try them, or by which I did try them only. The same Thing, I have
often done in the following Experiments: Concerning all which, this one
Admonition may suffice. Now from these Experiments it follows not, that
all the Light of the blue is more refrangible than all the Light of the
red: For both Lights are mixed of Rays differently refrangible, so that
in the red there are some Rays not less refrangible than those of the
blue, and in the blue there are some Rays not more refrangible than
those of the red: But these Rays, in proportion to the whole Light, are
but few, and serve to diminish the Event of the Experiment, but are not
able to destroy it. For, if the red and blue Colours were more dilute
and weak, the distance of the Images would be less than an Inch and a
half; and if they were more intense and full, that distance would be
greater, as will appear hereafter. These Experiments may suffice for the
Colours of Natural Bodies. For in the Colours made by the Refraction of
Prisms, this Proposition will appear by the Experiments which are now to
follow in the next Proposition.
_PROP._ II. THEOR. II.
_The Light of the Sun consists of Rays differently Refrangible._
The PROOF by Experiments.
[Illustration: FIG. 12.]
[Illustration: FIG. 13.]
_Exper._ 3.
In a very dark Chamber, at a round Hole, about one third Part of an Inch
broad, made in the Shut of a Window, I placed a Glass Prism, whereby the
Beam of the Sun's Light, which came in at that Hole, might be refracted
upwards toward the opposite Wall of the Chamber, and there form a
colour'd Image of the Sun. The Axis of the Prism (that is, the Line
passing through the middle of the Prism from one end of it to the other
end parallel to the edge of the Refracting Angle) was in this and the
following Experiments perpendicular to the incident Rays. About this
Axis I turned the Prism slowly, and saw the refracted Light on the Wall,
or coloured Image of the Sun, first to descend, and then to ascend.
Between the Descent and Ascent, when the Image seemed Stationary, I
stopp'd the Prism, and fix'd it in that Posture, that it should be moved
no more. For in that Posture the Refractions of the Light at the two
Sides of the refracting Angle, that is, at the Entrance of the Rays into
the Prism, and at their going out of it, were equal to one another.[C]
So also in other Experiments, as often as I would have the Refractions
on both sides the Prism to be equal to one another, I noted the Place
where the Image of the Sun formed by the refracted Light stood still
between its two contrary Motions, in the common Period of its Progress
and Regress; and when the Image fell upon that Place, I made fast the
Prism. And in this Posture, as the most convenient, it is to be
understood that all the Prisms are placed in the following Experiments,
unless where some other Posture is described. The Prism therefore being
placed in this Posture, I let the refracted Light fall perpendicularly
upon a Sheet of white Paper at the opposite Wall of the Chamber, and
observed the Figure and Dimensions of the Solar Image formed on the
Paper by that Light. This Image was Oblong and not Oval, but terminated
with two Rectilinear and Parallel Sides, and two Semicircular Ends. On
its Sides it was bounded pretty distinctly, but on its Ends very
confusedly and indistinctly, the Light there decaying and vanishing by
degrees. The Breadth of this Image answered to the Sun's Diameter, and
was about two Inches and the eighth Part of an Inch, including the
Penumbra. For the Image was eighteen Feet and an half distant from the
Prism, and at this distance that Breadth, if diminished by the Diameter
of the Hole in the Window-shut, that is by a quarter of an Inch,
subtended an Angle at the Prism of about half a Degree, which is the
Sun's apparent Diameter. But the Length of the Image was about ten
Inches and a quarter, and the Length of the Rectilinear Sides about
eight Inches; and the refracting Angle of the Prism, whereby so great a
Length was made, was 64 degrees. With a less Angle the Length of the
Image was less, the Breadth remaining the same. If the Prism was turned
about its Axis that way which made the Rays emerge more obliquely out of
the second refracting Surface of the Prism, the Image soon became an
Inch or two longer, or more; and if the Prism was turned about the
contrary way, so as to make the Rays fall more obliquely on the first
refracting Surface, the Image soon became an Inch or two shorter. And
therefore in trying this Experiment, I was as curious as I could be in
placing the Prism by the above-mention'd Rule exactly in such a Posture,
that the Refractions of the Rays at their Emergence out of the Prism
might be equal to that at their Incidence on it. This Prism had some
Veins running along within the Glass from one end to the other, which
scattered some of the Sun's Light irregularly, but had no sensible
Effect in increasing the Length of the coloured Spectrum. For I tried
the same Experiment with other Prisms with the same Success. And
particularly with a Prism which seemed free from such Veins, and whose
refracting Angle was 62-1/2 Degrees, I found the Length of the Image
9-3/4 or 10 Inches at the distance of 18-1/2 Feet from the Prism, the
Breadth of the Hole in the Window-shut being 1/4 of an Inch, as before.
And because it is easy to commit a Mistake in placing the Prism in its
due Posture, I repeated the Experiment four or five Times, and always
found the Length of the Image that which is set down above. With another
Prism of clearer Glass and better Polish, which seemed free from Veins,
and whose refracting Angle was 63-1/2 Degrees, the Length of this Image
at the same distance of 18-1/2 Feet was also about 10 Inches, or 10-1/8.
Beyond these Measures for about a 1/4 or 1/3 of an Inch at either end of
the Spectrum the Light of the Clouds seemed to be a little tinged with
red and violet, but so very faintly, that I suspected that Tincture
might either wholly, or in great Measure arise from some Rays of the
Spectrum scattered irregularly by some Inequalities in the Substance and
Polish of the Glass, and therefore I did not include it in these
Measures. Now the different Magnitude of the hole in the Window-shut,
and different thickness of the Prism where the Rays passed through it,
and different inclinations of the Prism to the Horizon, made no sensible
changes in the length of the Image. Neither did the different matter of
the Prisms make any: for in a Vessel made of polished Plates of Glass
cemented together in the shape of a Prism and filled with Water, there
is the like Success of the Experiment according to the quantity of the
Refraction. It is farther to be observed, that the Rays went on in right
Lines from the Prism to the Image, and therefore at their very going out
of the Prism had all that Inclination to one another from which the
length of the Image proceeded, that is, the Inclination of more than two
degrees and an half. And yet according to the Laws of Opticks vulgarly
received, they could not possibly be so much inclined to one another.[D]
For let EG [_Fig._ 13. (p. 27)] represent the Window-shut, F the hole
made therein through which a beam of the Sun's Light was transmitted
into the darkened Chamber, and ABC a Triangular Imaginary Plane whereby
the Prism is feigned to be cut transversely through the middle of the
Light. Or if you please, let ABC represent the Prism it self, looking
directly towards the Spectator's Eye with its nearer end: And let XY be
the Sun, MN the Paper upon which the Solar Image or Spectrum is cast,
and PT the Image it self whose sides towards _v_ and _w_ are Rectilinear
and Parallel, and ends towards P and T Semicircular. YKHP and XLJT are
two Rays, the first of which comes from the lower part of the Sun to the
higher part of the Image, and is refracted in the Prism at K and H, and
the latter comes from the higher part of the Sun to the lower part of
the Image, and is refracted at L and J. Since the Refractions on both
sides the Prism are equal to one another, that is, the Refraction at K
equal to the Refraction at J, and the Refraction at L equal to the
Refraction at H, so that the Refractions of the incident Rays at K and L
taken together, are equal to the Refractions of the emergent Rays at H
and J taken together: it follows by adding equal things to equal things,
that the Refractions at K and H taken together, are equal to the
Refractions at J and L taken together, and therefore the two Rays being
equally refracted, have the same Inclination to one another after
Refraction which they had before; that is, the Inclination of half a
Degree answering to the Sun's Diameter. For so great was the inclination
of the Rays to one another before Refraction. So then, the length of the
Image PT would by the Rules of Vulgar Opticks subtend an Angle of half a
Degree at the Prism, and by Consequence be equal to the breadth _vw_;
and therefore the Image would be round. Thus it would be were the two
Rays XLJT and YKHP, and all the rest which form the Image P_w_T_v_,
alike refrangible. And therefore seeing by Experience it is found that
the Image is not round, but about five times longer than broad, the Rays
which going to the upper end P of the Image suffer the greatest
Refraction, must be more refrangible than those which go to the lower
end T, unless the Inequality of Refraction be casual.
This Image or Spectrum PT was coloured, being red at its least refracted
end T, and violet at its most refracted end P, and yellow green and
blue in the intermediate Spaces. Which agrees with the first
Proposition, that Lights which differ in Colour, do also differ in
Refrangibility. The length of the Image in the foregoing Experiments, I
measured from the faintest and outmost red at one end, to the faintest
and outmost blue at the other end, excepting only a little Penumbra,
whose breadth scarce exceeded a quarter of an Inch, as was said above.
_Exper._ 4. In the Sun's Beam which was propagated into the Room through
the hole in the Window-shut, at the distance of some Feet from the hole,
I held the Prism in such a Posture, that its Axis might be perpendicular
to that Beam. Then I looked through the Prism upon the hole, and turning
the Prism to and fro about its Axis, to make the Image of the Hole
ascend and descend, when between its two contrary Motions it seemed
Stationary, I stopp'd the Prism, that the Refractions of both sides of
the refracting Angle might be equal to each other, as in the former
Experiment. In this situation of the Prism viewing through it the said
Hole, I observed the length of its refracted Image to be many times
greater than its breadth, and that the most refracted part thereof
appeared violet, the least refracted red, the middle parts blue, green
and yellow in order. The same thing happen'd when I removed the Prism
out of the Sun's Light, and looked through it upon the hole shining by
the Light of the Clouds beyond it. And yet if the Refraction were done
regularly according to one certain Proportion of the Sines of Incidence
and Refraction as is vulgarly supposed, the refracted Image ought to
have appeared round.
So then, by these two Experiments it appears, that in Equal Incidences
there is a considerable inequality of Refractions. But whence this
inequality arises, whether it be that some of the incident Rays are
refracted more, and others less, constantly, or by chance, or that one
and the same Ray is by Refraction disturbed, shatter'd, dilated, and as
it were split and spread into many diverging Rays, as _Grimaldo_
supposes, does not yet appear by these Experiments, but will appear by
those that follow.
_Exper._ 5. Considering therefore, that if in the third Experiment the
Image of the Sun should be drawn out into an oblong Form, either by a
Dilatation of every Ray, or by any other casual inequality of the
Refractions, the same oblong Image would by a second Refraction made
sideways be drawn out as much in breadth by the like Dilatation of the
Rays, or other casual inequality of the Refractions sideways, I tried
what would be the Effects of such a second Refraction. For this end I
ordered all things as in the third Experiment, and then placed a second
Prism immediately after the first in a cross Position to it, that it
might again refract the beam of the Sun's Light which came to it through
the first Prism. In the first Prism this beam was refracted upwards, and
in the second sideways. And I found that by the Refraction of the second
Prism, the breadth of the Image was not increased, but its superior
part, which in the first Prism suffered the greater Refraction, and
appeared violet and blue, did again in the second Prism suffer a greater
Refraction than its inferior part, which appeared red and yellow, and
this without any Dilatation of the Image in breadth.
[Illustration: FIG. 14]
_Illustration._ Let S [_Fig._ 14, 15.] represent the Sun, F the hole in
the Window, ABC the first Prism, DH the second Prism, Y the round Image
of the Sun made by a direct beam of Light when the Prisms are taken
away, PT the oblong Image of the Sun made by that beam passing through
the first Prism alone, when the second Prism is taken away, and _pt_ the
Image made by the cross Refractions of both Prisms together. Now if the
Rays which tend towards the several Points of the round Image Y were
dilated and spread by the Refraction of the first Prism, so that they
should not any longer go in single Lines to single Points, but that
every Ray being split, shattered, and changed from a Linear Ray to a
Superficies of Rays diverging from the Point of Refraction, and lying in
the Plane of the Angles of Incidence and Refraction, they should go in
those Planes to so many Lines reaching almost from one end of the Image
PT to the other, and if that Image should thence become oblong: those
Rays and their several parts tending towards the several Points of the
Image PT ought to be again dilated and spread sideways by the transverse
Refraction of the second Prism, so as to compose a four square Image,
such as is represented at [Greek: pt]. For the better understanding of
which, let the Image PT be distinguished into five equal parts PQK,
KQRL, LRSM, MSVN, NVT. And by the same irregularity that the orbicular
Light Y is by the Refraction of the first Prism dilated and drawn out
into a long Image PT, the Light PQK which takes up a space of the same
length and breadth with the Light Y ought to be by the Refraction of the
second Prism dilated and drawn out into the long Image _[Greek: p]qkp_,
and the Light KQRL into the long Image _kqrl_, and the Lights LRSM,
MSVN, NVT, into so many other long Images _lrsm_, _msvn_, _nvt[Greek:
t]_; and all these long Images would compose the four square Images
_[Greek: pt]_. Thus it ought to be were every Ray dilated by Refraction,
and spread into a triangular Superficies of Rays diverging from the
Point of Refraction. For the second Refraction would spread the Rays one
way as much as the first doth another, and so dilate the Image in
breadth as much as the first doth in length. And the same thing ought to
happen, were some rays casually refracted more than others. But the
Event is otherwise. The Image PT was not made broader by the Refraction
of the second Prism, but only became oblique, as 'tis represented at
_pt_, its upper end P being by the Refraction translated to a greater
distance than its lower end T. So then the Light which went towards the
upper end P of the Image, was (at equal Incidences) more refracted in
the second Prism, than the Light which tended towards the lower end T,
that is the blue and violet, than the red and yellow; and therefore was
more refrangible. The same Light was by the Refraction of the first
Prism translated farther from the place Y to which it tended before
Refraction; and therefore suffered as well in the first Prism as in the
second a greater Refraction than the rest of the Light, and by
consequence was more refrangible than the rest, even before its
incidence on the first Prism.
Sometimes I placed a third Prism after the second, and sometimes also a
fourth after the third, by all which the Image might be often refracted
sideways: but the Rays which were more refracted than the rest in the
first Prism were also more refracted in all the rest, and that without
any Dilatation of the Image sideways: and therefore those Rays for their
constancy of a greater Refraction are deservedly reputed more
refrangible.
[Illustration: FIG. 15]
But that the meaning of this Experiment may more clearly appear, it is
to be considered that the Rays which are equally refrangible do fall
upon a Circle answering to the Sun's Disque. For this was proved in the
third Experiment. By a Circle I understand not here a perfect
geometrical Circle, but any orbicular Figure whose length is equal to
its breadth, and which, as to Sense, may seem circular. Let therefore AG
[in _Fig._ 15.] represent the Circle which all the most refrangible Rays
propagated from the whole Disque of the Sun, would illuminate and paint
upon the opposite Wall if they were alone; EL the Circle which all the
least refrangible Rays would in like manner illuminate and paint if they
were alone; BH, CJ, DK, the Circles which so many intermediate sorts of
Rays would successively paint upon the Wall, if they were singly
propagated from the Sun in successive order, the rest being always
intercepted; and conceive that there are other intermediate Circles
without Number, which innumerable other intermediate sorts of Rays would
successively paint upon the Wall if the Sun should successively emit
every sort apart. And seeing the Sun emits all these sorts at once, they
must all together illuminate and paint innumerable equal Circles, of all
which, being according to their degrees of Refrangibility placed in
order in a continual Series, that oblong Spectrum PT is composed which I
described in the third Experiment. Now if the Sun's circular Image Y [in
_Fig._ 15.] which is made by an unrefracted beam of Light was by any
Dilation of the single Rays, or by any other irregularity in the
Refraction of the first Prism, converted into the oblong Spectrum, PT:
then ought every Circle AG, BH, CJ, &c. in that Spectrum, by the cross
Refraction of the second Prism again dilating or otherwise scattering
the Rays as before, to be in like manner drawn out and transformed into
an oblong Figure, and thereby the breadth of the Image PT would be now
as much augmented as the length of the Image Y was before by the
Refraction of the first Prism; and thus by the Refractions of both
Prisms together would be formed a four square Figure _p[Greek:
p]t[Greek: t]_, as I described above. Wherefore since the breadth of the
Spectrum PT is not increased by the Refraction sideways, it is certain
that the Rays are not split or dilated, or otherways irregularly
scatter'd by that Refraction, but that every Circle is by a regular and
uniform Refraction translated entire into another Place, as the Circle
AG by the greatest Refraction into the place _ag_, the Circle BH by a
less Refraction into the place _bh_, the Circle CJ by a Refraction still
less into the place _ci_, and so of the rest; by which means a new
Spectrum _pt_ inclined to the former PT is in like manner composed of
Circles lying in a right Line; and these Circles must be of the same
bigness with the former, because the breadths of all the Spectrums Y, PT
and _pt_ at equal distances from the Prisms are equal.
I considered farther, that by the breadth of the hole F through which
the Light enters into the dark Chamber, there is a Penumbra made in the
Circuit of the Spectrum Y, and that Penumbra remains in the rectilinear
Sides of the Spectrums PT and _pt_. I placed therefore at that hole a
Lens or Object-glass of a Telescope which might cast the Image of the
Sun distinctly on Y without any Penumbra at all, and found that the
Penumbra of the rectilinear Sides of the oblong Spectrums PT and _pt_
was also thereby taken away, so that those Sides appeared as distinctly
defined as did the Circumference of the first Image Y. Thus it happens
if the Glass of the Prisms be free from Veins, and their sides be
accurately plane and well polished without those numberless Waves or
Curles which usually arise from Sand-holes a little smoothed in
polishing with Putty. If the Glass be only well polished and free from
Veins, and the Sides not accurately plane, but a little Convex or
Concave, as it frequently happens; yet may the three Spectrums Y, PT and
_pt_ want Penumbras, but not in equal distances from the Prisms. Now
from this want of Penumbras, I knew more certainly that every one of the
Circles was refracted according to some most regular, uniform and
constant Law. For if there were any irregularity in the Refraction, the
right Lines AE and GL, which all the Circles in the Spectrum PT do
touch, could not by that Refraction be translated into the Lines _ae_
and _gl_ as distinct and straight as they were before, but there would
arise in those translated Lines some Penumbra or Crookedness or
Undulation, or other sensible Perturbation contrary to what is found by
Experience. Whatsoever Penumbra or Perturbation should be made in the
Circles by the cross Refraction of the second Prism, all that Penumbra
or Perturbation would be conspicuous in the right Lines _ae_ and _gl_
which touch those Circles. And therefore since there is no such Penumbra
or Perturbation in those right Lines, there must be none in the
Circles. Since the distance between those Tangents or breadth of the
Spectrum is not increased by the Refractions, the Diameters of the
Circles are not increased thereby. Since those Tangents continue to be
right Lines, every Circle which in the first Prism is more or less