-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmain.py
97 lines (73 loc) · 3.09 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import torch
import torch.nn as nn
import torchvision
from torchvision import transforms
from logger import Logger
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# MNIST dataset
dataset = torchvision.datasets.MNIST(root='../../data',
train=True,
transform=transforms.ToTensor(),
download=True)
# Data loader
data_loader = torch.utils.data.DataLoader(dataset=dataset,
batch_size=100,
shuffle=True)
# Fully connected neural network with one hidden layer
class NeuralNet(nn.Module):
def __init__(self, input_size=784, hidden_size=500, num_classes=10):
super(NeuralNet, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
model = NeuralNet().to(device)
logger = Logger('./logs')
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.00001)
data_iter = iter(data_loader)
iter_per_epoch = len(data_loader)
total_step = 50000
# Start training
for step in range(total_step):
# Reset the data_iter
if (step+1) % iter_per_epoch == 0:
data_iter = iter(data_loader)
# Fetch images and labels
images, labels = next(data_iter)
images, labels = images.view(images.size(0), -1).to(device), labels.to(device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Compute accuracy
_, argmax = torch.max(outputs, 1)
accuracy = (labels == argmax.squeeze()).float().mean()
if (step+1) % 100 == 0:
print ('Step [{}/{}], Loss: {:.4f}, Acc: {:.2f}'
.format(step+1, total_step, loss.item(), accuracy.item()))
# ================================================================== #
# Tensorboard Logging #
# ================================================================== #
# 1. Log scalar values (scalar summary)
info = { 'loss': loss.item(), 'accuracy': accuracy.item() }
for tag, value in info.items():
logger.scalar_summary(tag, value, step+1)
# 2. Log values and gradients of the parameters (histogram summary)
for tag, value in model.named_parameters():
tag = tag.replace('.', '/')
logger.histo_summary(tag, value.data.cpu().numpy(), step+1)
logger.histo_summary(tag+'/grad', value.grad.data.cpu().numpy(), step+1)
# 3. Log training images (image summary)
info = { 'images': images.view(-1, 28, 28)[:10].cpu().numpy() }
for tag, images in info.items():
logger.image_summary(tag, images, step+1)