-
Notifications
You must be signed in to change notification settings - Fork 6
/
general.c
1139 lines (925 loc) · 28.6 KB
/
general.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
** Astrolog (Version 5.41G) File: general.c
**
** Code changed by Valentin Abramov
**
** IMPORTANT NOTICE: The graphics database and chart display routines
** used in this program are Copyright (C) 1991-1998 by Walter D. Pullen
** ([email protected], http://www.magitech.com/~cruiser1/astrolog.htm).
** Permission is granted to freely use and distribute these routines
** provided one doesn't sell, restrict, or profit from them in any way.
** Modification is allowed provided these notices remain with any
** altered or edited versions of the program.
**
** The main planetary calculation routines used in this program have
** been Copyrighted and the core of this program is basically a
** conversion to C of the routines created by James Neely as listed in
** Michael Erlewine's 'Manual of Computer Programming for Astrologers',
** available from Matrix Software. The copyright gives us permission to
** use the routines for personal use but not to sell them or profit from
** them in any way.
**
** The PostScript code within the core graphics routines are programmed
** and Copyright (C) 1992-1993 by Brian D. Willoughby
** ([email protected]). Conditions are identical to those above.
**
** The extended accurate ephemeris databases and formulas are from the
** calculation routines in the library SWISS EPHEMERIS and are programmed and
** copyright 1998 by Astrodienst AG.
** The use of that source code is subject to
** the Swiss Ephemeris Public License, available at
** http://www.astro.ch/swisseph. This copyright notice must not be
** changed or removed by any user of this program.
**
** Initial programming 8/28,30, 9/10,13,16,20,23, 10/3,6,7, 11/7,10,21/1991.
** X Window graphics initially programmed 10/23-29/1991.
** PostScript graphics initially programmed 11/29-30/1992.
** Last code change made 12/20/1998.
** Modifications from version 5.40 to 5.41 are by Alois Treindl.
*/
#include "astrolog.h"
real rOne = 0.999999999;
real rFractal = 0.0;
/*
******************************************************************************
** General Procedures.
******************************************************************************
*/
/* Swap two floating point values. */
void SwapR(d1, d2)
real *d1, *d2;
{
real temp;
temp = *d1; *d1 = *d2; *d2 = temp;
}
/* Return the length of a string (not counting the null terminator). */
int CchSz(sz)
CONST byte *sz;
{
int i;
for (i = 0; *sz++; i++)
;
return i;
}
/* Compare two strings. Return 0 if they are equal, a positive value if */
/* the first string is greater, and a negative if the second is greater. */
int NCompareSz(s1, s2)
CONST byte *s1, *s2;
{
while (*s1 && *s1 == *s2)
s1++, s2++;
return *s1 - *s2;
}
/* Set a given number of bytes to zero given a starting pointer. */
void ClearB(pb, cb)
lpbyte pb;
int cb;
{
while (cb-- > 0)
*pb++ = 0;
}
/* Copy a given number of bytes from one location to another. */
void CopyRgb(pbSrc, pbDst, cb)
byte *pbSrc, *pbDst;
int cb;
{
while (cb-- > 0)
*pbDst++ = *pbSrc++;
}
/* Determine the sign of a number: -1 if value negative, +1 if value */
/* positive, and 0 if it's zero. */
real RSgn(r)
real r;
{
return r == 0.0 ? 0.0 : RSgn2(r);
}
/* Given an x and y coordinate, return the angle formed by a line from the */
/* origin to this coordinate. This is just converting from rectangular to */
/* polar coordinates; however, we don't determine the radius here. */
real Angle(x, y)
real x, y;
{
real a;
if (x != 0.0) {
if (y != 0.0)
a = RAtn(y/x);
else
a = x < 0.0 ? rPi : 0.0;
} else
a = y < 0.0 ? -rPiHalf : rPiHalf;
if (a < 0.0)
a += rPi;
if (y < 0.0)
a += rPi;
return a;
}
/* Modulus function for floating point values, where we bring the given */
/* parameter to within the range of 0 to 360. */
real Mod(d)
real d;
{
if (d >= rDegMax) /* In most cases, our value is only slightly */
d -= rDegMax; /* out of range, so we can test for it and */
else if (d < 0.0) /* avoid the more complicated arithmetic. */
d += rDegMax;
if (d >= 0 && d < rDegMax)
return d;
return (d - RFloor(d/rDegMax)*rDegMax);
}
/* Another modulus function, this time for the range of 0 to 2 Pi. */
real ModRad(r)
real r;
{
while (r >= rPi2) /* We assume our value is only slightly out of */
r -= rPi2; /* range, so test and never do any complicated math. */
while (r < 0.0)
r += rPi2;
return r;
}
/* Integer division - like the "/" operator but always rounds result down. */
long Dvd(x, y)
long x, y;
{
long z;
if (y == 0)
return x;
z = x / y;
if (((x >= 0) == (y >= 0)) || x-z*y == 0)
return z;
return z - 1;
}
/*
******************************************************************************
** General Astrology Procedures.
******************************************************************************
*/
/* A similar modulus function: convert an integer to value from 1..12. */
int Mod12(i)
int i;
{
while (i > cSign)
i -= cSign;
while (i < 1)
i += cSign;
return i;
}
/* Convert an inputed fractional degrees/minutes value to a true decimal */
/* degree quantity. For example, the user enters the decimal value "10.30" */
/* to mean 10 degrees and 30 minutes; this will return 10.5, i.e. 10 */
/* degrees and 30 minutes expressed as a floating point degree value. */
real DecToDeg(d)
real d;
{
return RSgn(d)*(RFloor(RAbs(d))+RFract(RAbs(d))*100.0/60.0);
}
/* This is the inverse of the above function. Given a true decimal value */
/* for a zodiac degree, adjust it so the degrees are in the integer part */
/* and the minute expressed as hundredths, e.g. 10.5 degrees -> 10.30 */
real DegToDec(d)
real d;
{
return RSgn(d)*(RFloor(RAbs(d))+RFract(RAbs(d))*60.0/100.0);
}
/* Return the shortest distance between two degrees in the zodiac. This is */
/* normally their difference, but we have to check if near the Aries point. */
real MinDistance(deg1, deg2)
real deg1, deg2;
{
real i;
i = RAbs(deg1-deg2);
return i < rDegHalf ? i : rDegMax - i;
}
/* This is just like the above routine, except the min distance value */
/* returned will either be positive or negative based on whether the */
/* second value is ahead or behind the first one in a circular zodiac. */
real MinDifference(deg1, deg2)
real deg1, deg2;
{
real i;
i = deg2 - deg1;
if (RAbs(i) < rDegHalf)
return i;
return RSgn(i)*(RAbs(i) - rDegMax);
}
/* Return the degree of the midpoint between two zodiac positions, making */
/* sure we return the true midpoint closest to the positions in question. */
real Midpoint(deg1, deg2)
real deg1, deg2;
{
real mid;
mid = (deg1+deg2)/2.0;
return MinDistance(deg1, mid) < rDegQuad ? mid : Mod(mid+rDegHalf);
}
/* Given a planet and sign, determine whether: The planet rules the sign, */
/* the planet has its fall in the sign, the planet exalts in the sign, or */
/* is debilitated in the sign; and return an appropriate character. */
byte Dignify(obj, sign)
int obj, sign;
{
if (obj > oNorm)
return ' ';
if (ruler1[obj] == sign || ruler2[obj] == sign)
return 'R';
if (ruler1[obj] == Mod12(sign+6) || ruler2[obj] == Mod12(sign+6))
return 'F';
if (exalt[obj] == sign)
return 'e';
if (exalt[obj] == Mod12(sign+6))
return 'd';
return '-';
}
/* Determine the number of days in a particular month. The year is needed, */
/* too, because we have to check for leap years in the case of February. */
int DayInMonth(month, year)
int month, year;
{
int d;
if (month == mSep || month == mApr || month == mJun || month == mNov)
d = 30;
else if (month != mFeb)
d = 31;
else {
d = 28;
if (year % 4 == 0 &&
(year % 100 != 0 || year % 400 == 0 || year <= yeaJ2G))
d++;
}
return d;
}
/* Return the actual number of days in a particular month. Normally, this */
/* is the same as the above routine which determines the index of the last */
/* day of the month, but the values can differ when changing between */
/* calendar systems (Julian to Gregorian) in which one can jump over days. */
int DaysInMonth(month, year)
int month, year;
{
int d;
d = DayInMonth(month, year);
if (year == yeaJ2G && month == monJ2G)
d -= (dayJ2G2 - dayJ2G1 - 1);
return d;
}
/* Return the day of the week (Sunday is 0) of the specified given date. */
int DayOfWeek(month, day, year)
int month, day, year;
{
int d;
d = (int)((MdyToJulian(month, day, year) + 1) % 7);
return d < 0 ? d+7 : d;
}
/* Given a day, and the month and year it falls in, add a number of days */
/* to it and return the new day index. As month changes are not checked for */
/* here, this is mostly just adding the offset to the day; however we need */
/* to check for calendar changes for when days in a month may be skipped. */
int AddDay(month, day, year, delta)
int month, day, year, delta;
{
int d;
d = day + delta;
if (year == yeaJ2G && month == monJ2G) { /* Check for Julian to */
if (d > dayJ2G1 && d < dayJ2G2) /* Gregorian crossover. */
d += NSgn(delta)*(dayJ2G2-dayJ2G1-1);
}
return d;
}
/* Given an aspect and two objects making that aspect with each other, */
/* return the maximum orb allowed for such an aspect. Normally this only */
/* depends on the aspect itself, but some objects require narrow orbs, */
/* and some allow wider orbs, so check for these cases. */
real GetOrb(obj1, obj2, asp)
int obj1, obj2, asp;
{
real orb, r;
orb = rAspOrb[asp];
r = obj1 > oNorm ? StarOrb : rObjOrb[obj1];
orb = Min(orb, r);
r = obj2 > oNorm ? StarOrb : rObjOrb[obj2];
orb = Min(orb, r);
if (obj1 <= oNorm && obj2 <= oNorm) {
orb += rObjAdd[obj1];
orb += rObjAdd[obj2];
if (us.fParallel)
orb = orb / CoeffPar;
else if (us.nRel <= rcDual || us.fTransitInf || us.fTransitInf)
orb = orb /CoeffComp;
}
return orb;
}
/*
******************************************************************************
** String Procedures.
******************************************************************************
*/
/* Exit the program, and do any cleanup necessary. Note that if we had */
/* a non-fatal error, and we are in the -Q loop mode, then we won't */
/* actually terminate the program, but drop back to the command line loop. */
void Terminate(tc)
int tc;
{
byte sz[cchSzDef];
if (us.fNoQuit)
return;
if (tc == tcForce) {
is.S = stdout;
AnsiColor(kWhite);
sprintf(sz, "\n%s %s exited.\n", szAppName, szVersionCore);
PrintSz(sz);
}
if (tc == tcError && us.fLoop)
return;
if (us.fAnsiColor) {
sprintf(sz, "%c[0m", chEscape); /* Get out of any Ansi color mode. */
PrintSz(sz);
}
exit(abs(tc));
}
/* Print a string on the screen. A seemingly simple operation, however we */
/* keep track of what column we are printing at after each newline so we */
/* can automatically clip at the appropriate point, and we keep track of */
/* the row we are printing at, so we may prompt before screen scrolling. */
void PrintSz(sz)
CONST byte *sz;
{
byte szInput[cchSzDef], *pch;
#ifndef WIN
int fT;
#endif
for (pch = (byte *)sz; *pch; pch++) {
if (*pch != '\n') {
is.cchCol++;
if (us.fClip80 && is.cchCol >= us.nScreenWidth) /* Clip if need be. */
continue;
} else {
is.cchRow++;
is.cchCol = 0;
}
#ifdef WIN
if (is.S == stdout) {
if ((byte)*pch >= ' ') {
szInput[0] = *pch; szInput[1] = chNull;
TextOut(wi.hdc, (is.cchCol - 1 - wi.xScroll * 10) * wi.xChar + 4,
(is.cchRow - wi.yScroll * 10) * wi.yChar, szInput, 1);
}
} else
#endif
putc(*pch, is.S);
#ifndef WIN
if (*pch == '\n' && is.S == stdout &&
us.nScrollRow > 0 && is.cchRow >= us.nScrollRow) {
/* If we've printed 'n' rows, stop and wait for a line to be entered. */
fT = us.fAnsiColor;
us.fAnsiColor = fFalse;
InputString("Press return to continue scrolling", szInput);
us.fAnsiColor = fT;
is.cchRow = 0;
/* One can actually give a few simple commands before hitting return. */
if (szInput[0] == '.' || szInput[0] == 'q')
Terminate(tcForce);
else if (szInput[0] == '8')
not(us.fClip80);
else if (szInput[0] == 'Q')
us.nScrollRow = 0;
else if (szInput[0] == 'k') {
if (us.fAnsiColor)
AnsiColor(kDefault);
not(us.fAnsiColor); not(us.fAnsiChar);
}
}
#else
if (*pch == '\n' && is.S == stdout && wi.hdcPrint != hdcNil &&
is.cchRow >= us.nScrollRow) {
/* If writing to the printer, start a new page when appropriate. */
is.cchRow = 0;
EndPage(wi.hdcPrint);
StartPage(wi.hdcPrint);
/* StartPage clobbers all the DC settings */
SetMapMode(wi.hdcPrint, MM_ANISOTROPIC); /* For SetViewPortExt */
SetViewportOrg(wi.hdcPrint, 0, 0);
SetViewportExt(wi.hdcPrint, GetDeviceCaps(wi.hdcPrint, HORZRES),
GetDeviceCaps(wi.hdcPrint, VERTRES));
SetWindowOrg(wi.hdcPrint, 0, 0);
SetWindowExt(wi.hdcPrint, wi.xClient, wi.yClient);
SetBkMode(wi.hdcPrint, TRANSPARENT);
SelectObject(wi.hdcPrint, wi.hfont);
}
#endif
}
}
/* Print a single character on the screen. */
void PrintCh(ch)
byte ch;
{
byte sz[2];
sz[0] = ch; sz[1] = chNull; /* Treat char as a string of length one. */
PrintSz(sz); /* Then call above to print the string. */
}
/* Print a string on the screen. Unlike the normal PrintSz(), here we still */
/* go to the standard output even if text is being sent to a file with -os. */
void PrintSzScreen(sz)
byte *sz;
{
FILE *fileT;
fileT = is.S;
is.S = stdout;
PrintSz(sz);
is.S = fileT;
}
/* Print a general user message given a string. This is just like the */
/* warning displayer below just that we print in a different color. */
void PrintNotice(sz)
byte *sz;
{
#ifndef WIN
/* Notice messages are ignored in the Windows version. */
AnsiColor(kYellow);
fprintf(stderr, "%s\n", sz);
AnsiColor(kDefault);
#endif
}
/* Print a warning message given a string. This is called in non-fatal */
/* cases where we return to normal execution after printing the string. */
void PrintWarning(sz)
byte *sz;
{
#ifndef WIN
AnsiColor(kRed);
fprintf(stderr, "%s\n", sz);
AnsiColor(kDefault);
#else
byte szT[cchSzDef];
sprintf(szT, "%s Warning", szAppName);
MessageBox(wi.hwndMain, sz, szT, MB_ICONSTOP);
#endif
}
/* Print an error message. This is called in more serious cases which halt */
/* running of the current chart sequence, which can terminate the program */
/* but isn't a fatal error in that we can still fall back to the -Q loop. */
void PrintError(sz)
byte *sz;
{
#ifndef WIN
AnsiColor(kRed);
fprintf(stderr, "%s: %s\n", szAppName, sz);
Terminate(tcError);
AnsiColor(kDefault);
#else
byte szT[cchSzDef];
sprintf(szT, "%s Error", szAppName);
MessageBox(wi.hwndMain, sz, szT, MB_ICONEXCLAMATION);
#endif
}
/* Simplification for a commonly printed error message. */
void ErrorArgc(szOpt)
byte *szOpt;
{
byte sz[cchSzDef];
sprintf(sz, "Too few options to switch %c%s", chSwitch, szOpt);
PrintError(sz);
}
/* Another simplification for a commonly printed error message. */
void ErrorValN(szOpt, nVal)
byte *szOpt;
int nVal;
{
byte sz[cchSzDef];
sprintf(sz, "Value %d passed to switch %c%s out of range.\n",
nVal, chSwitch, szOpt);
PrintError(sz);
}
/* Yet another place to print a type of error message. */
void ErrorArgv(szOpt)
byte *szOpt;
{
byte sz[cchSzDef];
sprintf(sz, "The switch %c%s is not allowed now.\n", chSwitch, szOpt);
PrintError(sz);
}
/* Still another place to print a type of error message. */
void ErrorSwitch(szOpt)
byte *szOpt;
{
byte sz[cchSzDef];
sprintf(sz, "Unknown switch '%s'", szOpt);
PrintError(sz);
}
#ifdef PLACALC
/* Print error messages dealing with ephemeris file access. */
void ErrorEphem(sz, l)
byte *sz;
long l;
{
byte szT[cchSzDef];
if (l < 0)
sprintf(szT, "Ephemeris file %s not found.\n", sz);
else
sprintf(szT, "Ephemeris file %s is damaged at position %ld.\n", sz, l);
is.fNoEphFile = fTrue;
PrintWarning(szT);
}
#endif
/* A simple procedure used throughout Astrolog: Print a particular */
/* character on the screen 'n' times. */
void PrintTab(ch, cch)
byte ch;
int cch;
{
int i;
for (i = 0; i < cch; i++)
PrintCh(ch);
}
/* Set an Ansi or MS Windows text color. */
void AnsiColor(k)
int k;
{
byte sz[cchSzDef];
int cchSav;
#ifdef WIN
if (is.S == stdout) {
if (k < 0)
k = kLtGray;
SetTextColor(wi.hdc,
(COLORREF)rgbbmp[us.fAnsiColor ? k : (gs.fInverse ? kBlack : kLtGray)]);
return;
}
#endif
/* Special case: If we are passed the value Reverse, and Ansi color is */
/* not only on but set to a value > 1, then enter reverse video mode. */
if (!us.fAnsiColor || (k == kReverse && us.fAnsiColor < 2))
return;
cchSav = is.cchCol;
is.cchCol = 0;
sprintf(sz, "%c[", chEscape);
PrintSz(sz);
if (k == kDefault)
PrintCh('0');
else if (k == kReverse) {
PrintCh('7');
} else {
sprintf(sz, "%c;%d", k > 7 ? '1' : '0', 30 + (k & 7));
PrintSz(sz);
}
PrintCh('m');
is.cchCol = cchSav;
}
/* Print a zodiac position on the screen. This basically just prints the */
/* string returned from SzZodiac() below, except we take care of color. */
void PrintZodiac(deg)
real deg;
{
AnsiColor(kElemA[(int)(deg / 30.0) & 3]);
PrintSz(SzZodiac(deg));
AnsiColor(kDefault);
}
/* Given a zodiac position, return a string containing it as it's */
/* formatted for display to the user. */
byte *SzZodiac(deg)
real deg;
{
static byte szZod[11];
int sign, d, m;
real s;
switch (us.nDegForm) {
case 0:
/* Normally, we format the position in degrees/sign/minutes format: */
deg = Mod(deg + (is.fSeconds ? rRound/60.0/60.0 : rRound/60.0));
sign = (int)deg / 30;
d = (int)deg - sign*30;
m = (int)(RFract(deg)*60.0);
sprintf(szZod, "%2d%c%c%c%02d", d, chSig3(sign + 1), m);
if (is.fSeconds) {
s = RFract(deg)*60.0; s = RFract(s)*60.0;
sprintf(&szZod[7], "'%02d\"", (int)s);
}
break;
case 1:
/* However, if -sh switch in effect, get position in hours/minutes: */
deg = Mod(deg + (is.fSeconds ? rRound/4.0/60.0 : rRound/4.0));
d = (int)deg / 15;
m = (int)((deg - (real)d*15.0)*4.0);
sprintf(szZod, "%2dh,%02dm", d, m);
if (is.fSeconds) {
s = RFract(deg)*4.0; s = RFract(s)*60.0;
sprintf(&szZod[7], ",%02ds", (int)s);
}
break;
default:
/* Otherwise, if -sd in effect, format position as a simple degree: */
sprintf(szZod, is.fSeconds ? "%11.7f" : "%7.3f", deg);
break;
}
return szZod;
}
/* This is similar to formatting a zodiac degree, but here we return a */
/* string of a (signed) declination value in degrees and minutes. */
byte *SzAltitude(deg)
real deg;
{
static byte szAlt[10];
int d, m, f;
real s;
byte ch;
f = deg < 0.0;
deg = RAbs(deg) + (is.fSeconds ? rRound/60.0/60.0 : rRound/60.0);
d = (int)deg;
m = (int)(RFract(deg)*60.0);
ch = us.fAnsiChar > 1 ? 248 : chDeg1;
sprintf(szAlt, "%c%2d%c%02d'", f ? '-' : '+', d, ch, m);
if (is.fSeconds) {
s = RFract(deg)*60.0; s = RFract(s)*60.0;
sprintf(&szAlt[7], "%02d\"", (int)s);
}
return szAlt;
}
/* Here we return a string simply expressing the given value as degrees */
/* and minutes (and sometimes seconds) in the 0 to 360 degree circle. */
byte *SzDegree(deg)
real deg;
{
static byte szPos[11];
int d, m;
real s;
deg = RAbs(deg) + (is.fSeconds ? rRound/60.0/60.0 : rRound/60.0);
d = (int)deg;
m = (int)(RFract(deg)*60.0);
sprintf(szPos, "%3d%c%02d'", d, chDeg1, m);
if (is.fSeconds) {
s = RFract(deg)*60.0; s = RFract(s)*60.0;
sprintf(&szPos[7], "%02d\"", (int)s);
}
return szPos;
}
/* Another string formatter, here we return a date string given a month, */
/* day, and year. We format with the day or month first based on whether */
/* the "European" date variable is set or not. The routine also takes a */
/* parameter to indicate how much the string should be abbreviated, if any. */
byte *SzDate(mon, day, yea, nFormat)
int mon, day, yea, nFormat;
{
static byte szDat[20];
if (us.fEuroDate) {
switch (nFormat) {
case 2: sprintf(szDat, "%2d %c%c%c%5d", day, chMon3(mon), yea); break;
case 1: sprintf(szDat, "%d %s %d", day, szMonth[mon], yea); break;
case -1: sprintf(szDat, "%2d-%2d-%2d", day, mon, abs(yea)%100); break;
default: sprintf(szDat, "%2d-%2d-%4d", day, mon, yea); break;
}
} else {
switch (nFormat) {
case 3: sprintf(szDat, "%c%c%c %2d, %d", chMon3(mon), day, yea); break;
case 2: sprintf(szDat, "%c%c%c %2d%5d", chMon3(mon), day, yea); break;
case 1: sprintf(szDat, "%s %d, %d", szMonth[mon], day, yea); break;
case -1: sprintf(szDat, "%2d/%2d/%2d", mon, day, abs(yea)%100); break;
default: sprintf(szDat, "%2d/%2d/%4d", mon, day, yea); break;
}
}
return szDat;
}
/* Return a string containing the given time expressed as an hour and */
/* minute quantity. This is formatted in 24 hour or am/pm time based */
/* on whether the "European" time format flag is set or not. */
byte *SzTime(hr, min, sec)
int hr, min, sec;
{
static byte szTim[12];
while (min >= 60) {
min -= 60;
hr++;
}
while (hr < 0)
hr += 24;
while (hr >= 24)
hr -= 24;
if (us.fEuroTime) {
if (sec == -1)
sprintf(szTim, "%2d:%02d", hr, min);
else
sprintf(szTim, "%2d:%02d:%02d", hr, min, sec);
} else {
if (sec == -1)
sprintf(szTim, "%2d:%02d%cm", Mod12(hr), min, hr < 12 ? 'a' : 'p');
else
sprintf(szTim, "%2d:%02d:%02d%cm", Mod12(hr), min, sec,hr < 12 ? 'a' : 'p');
}
return szTim;
}
/* This just determines the correct hour and minute and calls the above. */
byte *SzTim(tim)
real tim;
{
int hr, min, sec;
real rMin;
hr = NFloor(tim);
rMin = RFract(RAbs(tim)) * 100.0;
min = (int)(rMin + rRound / 600.0);
rFractal = RFract(rMin);
if (rFractal > rOne)
rFractal = rSmall;
sec = (int)(60.0*rFractal + rRound);
return SzTime(hr, min, sec);
/* return SzTime(NFloor(tim), (int)(RFract(RAbs(tim))*100.0+rRound/600.0)); */
}
/* Return a string containing the given time zone, given as a real value */
/* having the hours before GMT in the integer part and minutes fractionally. */
byte *SzZone(zon)
real zon;
{
static byte szZon[7];
sprintf(szZon, "%c%d:%02d", zon > 0.0 ? '-' : '+', (int)RAbs(zon),
(int)(RFract(RAbs(zon))*100.0+rRound/60.0));
return szZon;
}
/* Nicely format the given longitude and latitude locations and return */
/* them in a string. Various parts of the program display a chart header, */
/* and this allows the similar computations to be coded only once. */
byte *SzLocation(lon, lat)
real lon, lat;
{
static byte szLoc[32];
int mini, minj, seci, secj;
real rMin;
byte ch1, ch2, ch3;
rMin = RFract(RAbs(lon)) * 100.0;
mini = (int)(rMin + rRound / 600.0);
rFractal = RFract(rMin);
if (rFractal > rOne)
rFractal = rSmall;
seci = (int)(60.0 * rFractal + rRound);
rMin = RFract(RAbs(lat)) * 100.0;
minj = (int)(rMin + rRound / 600.0);
rFractal = RFract(rMin);
if (rFractal > rOne)
rFractal = rSmall;
secj = (int)(60.0 * rFractal + rRound);
ch1 = us.fAnsiChar > 1 ? 248 : chDeg1;
ch2 = us.fAnsiChar > 1 ? 39 : chMin1;
ch3 = us.fAnsiChar > 1 ? 34 : chSec1;
if (us.fAnsiChar) {
if (us.fAnsiChar != 3) {
sprintf(szLoc, "%3.0f%c%02d%c%02d%c%c%3.0f%c%02d%c%02d%c%c",
RFloor(RAbs(lon)), ch1, mini, ch2, seci, ch3, lon < 0.0 ? 'E' : 'W',
RFloor(RAbs(lat)), ch1, minj, ch2, secj, ch3, lat < 0.0 ? 'S' : 'N');
} else {
sprintf(szLoc, "%3.0f%c%02d%c%02d%3.0f%c%02d%c%02d",
RFloor(RAbs(lon)), lon < 0.0 ? 'E' : 'W', mini, ch2, seci,
RFloor(RAbs(lat)), lat < 0.0 ? 'S' : 'N', minj, ch2, secj);
}
} else {
sprintf(szLoc, "%3.0f%c%02d%c%02d%c%3.0f%c%02d%c%02d%c",
RFloor(RAbs(lon)), ch1, mini, ch2, seci, lon < 0.0 ? 'E' : 'W',
RFloor(RAbs(lat)), ch1, minj, ch2, secj, lat < 0.0 ? 'S' : 'N');
}
return szLoc;
}
#ifdef TIME
/* Compute the date and time it is right now as the program is running */
/* using the computer's internal clock. We do this by getting the number */
/* of seconds which have passed since January 1, 1970 and going from there. */
/* The time return value filled is expressed in the given zone parameter. */
void GetTimeNow(mon, day, yea, tim, zon)
int *mon, *day, *yea;
real *tim, zon;
{
dword curtimer;
int min, sec;
real hr;
time(&curtimer);
sec = (int)(curtimer % 60);
curtimer = curtimer / 60 + us.lTimeAddition;
min = (int)(curtimer % 60);
curtimer /= 60;
#ifdef MAC
curtimer += 8;
#endif
hr = (real)(curtimer % 24) - zon;
curtimer /= 24;
while (hr < 0.0) {
curtimer--;
hr += 24.0;
}
while (hr >= 24.0) {
curtimer++;
hr -= 24.0;
}
curtimer += ldTime; /* Number of days between 1/1/1970 and 1/1/4713 BC. */
JulianToMdy((real)curtimer, mon, day, yea);
*tim = hr + (real)min / 100.0 + (real)sec / 6000.0;
}
#endif /* TIME */