Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Crash: Unable to get JIT kernel for brgemm. Params: M=31, N=31, K=128, str_a=1, str_b=1, brgemm_type=1, beta=0, a_trans=0, unroll_hint=1, lda=6144, ldb=31, ldc=31, config=0, b_vnni=0 #782

Open
rohezal opened this issue Feb 5, 2025 · 1 comment
Assignees

Comments

@rohezal
Copy link

rohezal commented Feb 5, 2025

Describe the bug

By using float16 instead of bfloat16, it crashes with. Only bfloat16 works, which leads to very poor performance. This happens in pytorch 2.5.1 using your extension.

Works:
vllm serve ~/projects/webui/text-generation-webui/models/gpqt/ --dtype=bfloat16

Crashes :
vllm serve ~/projects/webui/text-generation-webui/models/gpqt/ --dtype=float16

Error:

ERROR 02-05 14:17:09 client.py:300] RuntimeError('Engine process (pid 15188) died.')```


https://github.com/vllm-project/vllm/issues/12778

### Versions


INFO 02-05 14:11:02 __init__.py:186] Automatically detected platform cpu.
Collecting environment information...
PyTorch version: 2.5.1+cpu
Is debug build: False
CUDA used to build PyTorch: None
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 12.3.0-1ubuntu1~22.04) 12.3.0
Clang version: 14.0.0-1ubuntu1.1
CMake version: version 3.31.4
Libc version: glibc-2.35

Python version: 3.12.8 | packaged by Anaconda, Inc. | (main, Dec 11 2024, 16:31:09) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-6.8.0-52-generic-x86_64-with-glibc2.35
Is CUDA available: False
CUDA runtime version: No CUDA
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        43 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               16
On-line CPU(s) list:                  0-15
Vendor ID:                            AuthenticAMD
Model name:                           AMD Ryzen Threadripper 1900X 8-Core Processor
CPU family:                           23
Model:                                1
Thread(s) per core:                   2
Core(s) per socket:                   8
Socket(s):                            1
Stepping:                             1
Frequency boost:                      enabled
CPU max MHz:                          3800,0000
CPU min MHz:                          2200,0000
BogoMIPS:                             7584.62
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid amd_dcm aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb hw_pstate ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt sha_ni xsaveopt xsavec xgetbv1 clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif overflow_recov succor smca sev
L1d cache:                            256 KiB (8 instances)
L1i cache:                            512 KiB (8 instances)
L2 cache:                             4 MiB (8 instances)
L3 cache:                             16 MiB (2 instances)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0-15
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Mitigation; untrained return thunk; SMT vulnerable
Vulnerability Spec rstack overflow:   Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] pyzmq==26.2.1
[pip3] torch==2.5.1+cpu
[pip3] torchaudio==2.5.1+cpu
[pip3] torchvision==0.20.1+cpu
[pip3] transformers==4.48.2
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] pyzmq                     26.2.1                   pypi_0    pypi
[conda] torch                     2.5.1+cpu                pypi_0    pypi
[conda] torchaudio                2.5.1+cpu                pypi_0    pypi
[conda] torchvision               0.20.1+cpu               pypi_0    pypi
[conda] transformers              4.48.2                   pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.7.2.dev36+g18016a5e
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
========================= ROCm System Management Interface =========================
============================= Weight between two GPUs ==============================
       GPU0         
GPU0   0            

============================== Hops between two GPUs ===============================
       GPU0         
GPU0   0            

============================ Link Type between two GPUs ============================
       GPU0         
GPU0   0            

==================================== Numa Nodes ====================================
GPU[0]		: (Topology) Numa Node: 0
GPU[0]		: (Topology) Numa Affinity: 4294967295
=============================== End of ROCm SMI Log ================================

NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
@devpramod devpramod self-assigned this Feb 12, 2025
@devpramod
Copy link
Contributor

Hi @rohezal
I noticed that there is no IPEX under relevant libraries. Is it installed?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants