diff --git a/test/xpu/skip_list_common.py b/test/xpu/skip_list_common.py index 9f810433bd..620f3516f9 100644 --- a/test/xpu/skip_list_common.py +++ b/test/xpu/skip_list_common.py @@ -804,4 +804,5 @@ "functorch/test_ops_xpu.py": None, "test_sparse_xpu.py": None, "test_sparse_csr_xpu.py": None, + "test_nestedtensor_xpu.py": None, } diff --git a/test/xpu/test_nestedtensor_xpu.py b/test/xpu/test_nestedtensor_xpu.py index 756b05f18a..75284a2474 100644 --- a/test/xpu/test_nestedtensor_xpu.py +++ b/test/xpu/test_nestedtensor_xpu.py @@ -1,44 +1,598 @@ -# Owner(s): ["module: intel"] - +# Owner(s): ["module: nestedtensor"] +# ruff: noqa: F841 import ast +import io +import itertools +import math +import os +import random import sys +import tempfile import unittest +from functools import partial +from typing import Optional +import numpy as np import torch +import torch._dynamo +import torch._dynamo.testing +import torch.nn import torch.nn.functional as F -from torch.testing._internal.common_cuda import PLATFORM_SUPPORTS_FUSED_ATTENTION +from torch.nested._internal.nested_tensor import ( + buffer_from_jagged, + jagged_from_list, + nested_view_from_values_offsets, + NestedTensor, + ViewNestedFromBuffer, +) +from torch.testing._internal.common_cuda import ( + PLATFORM_SUPPORTS_FUSED_ATTENTION, + SM70OrLater, + SM80OrLater, + tf32_on_and_off, +) from torch.testing._internal.common_device_type import ( dtypes, + dtypesIfCUDA, instantiate_device_type_tests, + onlyCPU, + onlyCUDA, + onlyOn, + ops, + PYTORCH_CUDA_MEMCHECK, + skipCPUIf, + skipCUDAIf, + skipCUDAIfRocm, skipMeta, ) +from torch.testing._internal.common_dtype import floating_types_and_half from torch.testing._internal.common_utils import ( + decorateIf, + freeze_rng_state, + gradcheck, instantiate_parametrized_tests, + IS_FBCODE, IS_WINDOWS, + markDynamoStrictTest, + NestedTensorTestCase, parametrize, run_tests, + serialTest, + skipIfSlowGradcheckEnv, skipIfTorchDynamo, + subtest, + TEST_WITH_ROCM, + xfailIfTorchDynamo, +) +from torch.testing._internal.opinfo.core import ( + BinaryUfuncInfo, + ReductionOpInfo, + sample_skips_and_xfails, + SkipRule, + XFailRule, ) +from torch.testing._internal.opinfo.definitions.nested import _sample_njts, njt_op_db +from torch.utils._pytree import tree_flatten, tree_map_only +from torch.utils.checkpoint import checkpoint, create_selective_checkpoint_contexts + +# Tests are ported from pytorch/nestedtensor. +# This makes porting as_nested_tensor easier in the future. + + +def _iter_constructors(): + # yield as_nested_tensor + yield torch.nested.nested_tensor + + +# Returns True if the function recompiles between inputs1 and inputs2 with the +# specified dynamic setting. +def _recompiles_for_inputs(fn, inputs1, inputs2, dynamic=True): + compile_count = [0] + + def counter(gm, example_inputs): + compile_count[0] += 1 + return gm + + compiled_f = torch.compile(fn, fullgraph=True, backend=counter, dynamic=dynamic) + compiled_f(*inputs1) + compiled_f(*inputs2) + return compile_count[0] > 1 + + +# Helper function to generate a pair of random nested tensors +# one is contiguous, the other is not, but they appear to have same entries +# an output nested tensor consists of +# * `len(ragged_sizes)` matrices +# * matrices[i].shape == (20, ragged_sizes[i]) + + +def random_nt_noncontiguous_pair(ragged_sizes, device="cpu", dtype=torch.float16): + xs = [] + for size in ragged_sizes: + xs.append(torch.randn((size, 20), device=device, dtype=dtype)) + # contiguous nested tensor + ys = [] + for x in xs: + ys.append(x.transpose(-1, -2)) + nt_contiguous = torch.nested.nested_tensor(ys) + # noncontiguous nested tensor + n = len(ragged_sizes) + nt_noncontiguous = torch.nested.nested_tensor(xs).transpose(-1, -2) + return nt_contiguous, nt_noncontiguous + + +# Helper functions to pad a noncontiguous nested tensor +# can be replaced once to_padded_tensor supports noncontiguous memory + + +def noncontiguous_to_padded_tensor(input, shape=None): + tensors = input.unbind() + ntensors = len(tensors) + assert ntensors > 0 + if shape is None: + shape = [] + for size in tensors[0].shape: + shape.append(size) + for i in range(1, ntensors): + new_shape = tensors[i].shape + for j in range(len(shape)): + shape[j] = max(shape[j], new_shape[j]) + shape = [ntensors] + shape + result = tensors[0].new_zeros(shape) + for itensor in range(ntensors): + tensor = tensors[itensor] + view = result[itensor] + for idim in range(tensor.dim()): + view = view.narrow(idim, 0, tensor.size(idim)) + view.copy_(tensor) + return result + + +# Helper function to generate a random nested tensor + + +def random_nt( + device, + dtype, + num_tensors, + max_dims, + min_dims=None, + layout=torch.strided, + require_non_empty=True, +): + if min_dims is None: + min_dims = tuple([0] * len(max_dims)) + + assert len(max_dims) == len(min_dims) + for min_dim, max_dim in zip(min_dims, max_dims): + assert max_dim > min_dim, "random_nt: max_dim must be greater than min_dim" + assert min_dim >= 0, "random_nt: min_dim must be non-negative" + if require_non_empty: + assert not ( + min_dim == 0 and max_dim == 1 + ), "random_nt: zero cannot be the only possible value if require_non_empty is True" + + if require_non_empty: + # Select a random idx that will be required to be non-empty + non_zero_idx = torch.randint(low=0, high=num_tensors, size=(1,)).item() + + ts1 = [] + for i, _ in enumerate(range(num_tensors)): + tensor_dims = [] + for min_dim, max_dim in zip(min_dims, max_dims): + new_min_dim = min_dim + if require_non_empty and i == non_zero_idx and min_dim == 0: + new_min_dim = 1 + tensor_dims.append( + torch.randint(low=new_min_dim, high=max_dim, size=(1,)).item() + ) + t1 = torch.randn(tensor_dims, device=device, dtype=dtype) + ts1.append(t1) + + return torch.nested.nested_tensor(ts1, device=device, dtype=dtype, layout=layout) + + +# Alternate approach to generating a random NT. +# dims should be something like [5, None, 10], with None indicating that a +# random ragged structure should be used +def random_nt_from_dims( + dims, device=None, dtype=None, layout=torch.strided, requires_grad=False +): + sizes = [ + [ + d if d is not None else torch.randint(2, 10, size=(1,)).item() + for d in dims[1:] + ] + for d in range(dims[0]) + ] + return torch.nested.nested_tensor( + [torch.randn(*size) for size in sizes], + device=device, + dtype=dtype, + layout=layout, + requires_grad=requires_grad, + ) + + +# Creates an NT matching another NT's number of components and +# shape / ragged structure for all dims specified to be -1. +def random_nt_from_similar(other, dims=None): + if dims is None: + return torch.randn_like(other) + assert len(dims) == other.dim() + assert dims[0] == -1 or dims[0] == other.size(0) + + ret_sizes = [] + for t in other.unbind(): + other_size = t.shape + ret_size = [] + for i, d in enumerate(dims[1:]): + if d == -1: + ret_size.append(other_size[i]) + else: + ret_size.append(d) + ret_sizes.append(ret_size) + + return torch.nested.nested_tensor( + [torch.randn(*size) for size in ret_sizes], device=other.device + ) + + +# makes naming nice for tests that parametrize over layout. +def layout_name(layout): + # e.g. "torch.jagged" -> "jagged" + return layout.__repr__().split(".")[-1] + + +def get_op_name(layout): + # e.g. "" -> "sum" + return layout.__name__.split(".")[0].split("_")[-1] + + +# Helper function for test_dummy_mha_with_nt +@torch.fx.wrap +def convert_dense_to_nested_tensor_legacy(values): + offsets = torch.arange( + 0, values.shape[0] * values.shape[1] + 1, values.shape[1], device=values.device + ) + metadata_cache = {"max_seqlen": values.shape[1], "min_seqlen": 1} + nt = ViewNestedFromBuffer.apply( + values.view(-1, values.shape[-1]), offsets, metadata_cache + ) + return nt + + +# Helper function for test_dummy_mha_with_nt +@torch.fx.wrap +def convert_jagged_to_nested_tensor_legacy( + values: torch.Tensor, offsets: torch.Tensor, max_length: int +) -> torch.Tensor: + metadata_cache = {"max_seqlen": max_length, "min_seqlen": 1} + nt = ViewNestedFromBuffer.apply(values, offsets, metadata_cache) + return nt + + +# Helper function for test_dummy_mha_with_nt +@torch.fx.wrap +def convert_nt_to_jagged_legacy(nt): + return buffer_from_jagged(nt) + + +# Helper function for test_dummy_mha_with_nt +@torch.fx.wrap +def convert_dense_to_nested_tensor(values): + nt = torch.nested.as_nested_tensor(values, layout=torch.jagged) + return nt + + +# Helper function for test_dummy_mha_with_nt +@torch.fx.wrap +def convert_jagged_to_nested_tensor( + values: torch.Tensor, offsets: torch.Tensor, max_length: int +) -> torch.Tensor: + nt = torch.nested.nested_tensor_from_jagged( + values, offsets, lengths=None, min_seqlen=1, max_seqlen=max_length + ) + return nt + + +# Helper function for test_dummy_mha_with_nt +def convert_nt_to_jagged(nt): + return nt.values() + + +@markDynamoStrictTest +class TestNestedTensor(NestedTensorTestCase): + @parametrize("batch_size", [2, 4]) + @parametrize("max_seq_len", [3, 5]) + @parametrize("vocab_size", [10, 20]) + def test_2d_nested_tensor(self, batch_size, max_seq_len, vocab_size): + data = [] + nested_tensor_ref_list = [] + for _ in range(batch_size): + if max_seq_len == 0: + length = 0 + else: + length = np.random.randint(low=1, high=max_seq_len) + row = list(np.random.randint(low=0, high=vocab_size, size=(length,))) + data.append(row) + nested_tensor_ref_list.append(torch.Tensor(row)) + nested_tensor = torch.nested.nested_tensor(data, dtype=torch.int64) + nested_tensor_list = nested_tensor.unbind() + for id in range(batch_size): + self.assertEqual( + nested_tensor_list[id], nested_tensor_ref_list[id].type(torch.int64) + ) + + @parametrize("batch_size", [2, 4]) + @parametrize("max_seq_len", [3, 5]) + @parametrize("vocab_size", [10, 20]) + def test_3d_nested_tensor(self, batch_size, max_seq_len, vocab_size): + data = [] + nested_tensor_ref_list = [] + for _ in range(batch_size): + if max_seq_len == 0: + length = 0 + else: + length = np.random.randint(low=1, high=max_seq_len) + row = list(np.random.randint(low=0, high=vocab_size, size=(length,))) + row = [list(item * np.arange(max_seq_len)) for item in row] + data.append(row) + nested_tensor_ref_list.append(torch.Tensor(row)) + nested_tensor = torch.nested.nested_tensor(data, dtype=torch.int64) + nested_tensor_list = nested_tensor.unbind() + for id in range(batch_size): + self.assertEqual( + nested_tensor_list[id], nested_tensor_ref_list[id].type(torch.int64) + ) + + @parametrize("batch_size", [2, 4]) + @parametrize("max_seq_len", [3, 5]) + @parametrize("vocab_size", [10, 20]) + def test_3d_nested_tensor_float(self, batch_size, max_seq_len, vocab_size): + data = [] + nested_tensor_ref_list = [] + for _ in range(batch_size): + if max_seq_len == 0: + length = 0 + else: + length = np.random.randint(low=1, high=max_seq_len) + row = list( + np.random.randint(low=0, high=vocab_size, size=(length,)).astype(float) + ) + row = [list(item * np.arange(max_seq_len)) for item in row] + data.append(row) + nested_tensor_ref_list.append(torch.Tensor(row)) + nested_tensor = torch.nested.nested_tensor(data, dtype=torch.float) + nested_tensor_list = nested_tensor.unbind() + for id in range(batch_size): + self.assertEqual( + nested_tensor_list[id], nested_tensor_ref_list[id].type(torch.float) + ) + + @torch.inference_mode() + def _test_unbind_case(self, a, b): + nt = torch.nested.nested_tensor([a, b]) + a1, b1 = nt.unbind() + self.assertTrue(a is not a1) + self.assertTrue(b is not b1) + + nt = torch.nested.nested_tensor([a, b], dtype=a.dtype) + a1, b1 = nt.unbind(0) + self.assertEqual(a, a1) + self.assertEqual(b, b1) + + a = torch.randn((2, 3)).add_(1) + nt = torch.nested.nested_tensor([a]) + self.assertEqual(a, nt.unbind(0)[0]) + + @torch.inference_mode() + def test_unbind_0(self): + self._test_unbind_case(torch.tensor([1, 2]), torch.tensor([7, 8])) + + @torch.inference_mode() + def test_unbind_1(self): + self._test_unbind_case(torch.tensor([1]), torch.tensor([7])) + + @torch.inference_mode() + def test_unbind_3(self): + self._test_unbind_case(torch.tensor([1.0]), torch.tensor([])) + + @torch.inference_mode() + def test_unbind_4(self): + self._test_unbind_case(torch.tensor([]), torch.tensor([])) + + @torch.inference_mode() + def test_unbind_dim(self): + def _test_fn(unbind_fn): + a = torch.rand(3, 2) + b = torch.rand(2, 3) + nt = torch.nested.nested_tensor([a, b]) + self.assertRaises(RuntimeError, lambda: unbind_fn(nt, 1)) + + # Both of these tests are necessary, because we're using + # torch_function. + _test_fn(lambda x, dim: x.unbind(dim)) + # TODO: Re-enable this once using torch_dispatch + # _test_fn(lambda x, dim: torch.unbind(x, dim)) + + @torch.inference_mode() + def test_nested_tensor(self): + self.assertRaises( + TypeError, lambda: torch.nested.nested_tensor(torch.tensor([3.0])) + ) + self.assertRaises(TypeError, lambda: torch.nested.nested_tensor(4.0)) + + @torch.inference_mode() + def test_nested_tensor_matching_dim(self): + self.assertRaisesRegex( + RuntimeError, + "Found dimension 1 for Tensor at index 1 and dimension 0 for Tensor at index 0.", + lambda: torch.nested.nested_tensor([torch.tensor(1.0), torch.tensor([])]), + ) + self.assertRaisesRegex( + RuntimeError, + "Found dimension 1 for Tensor at index 2 and dimension 0 for Tensor at index 1.", + lambda: torch.nested.nested_tensor( + [torch.tensor(1.0), torch.tensor(2.0), torch.tensor([])] + ), + ) + + @torch.inference_mode() + def test_default_nested_tensor(self): + self.assertRaises(TypeError, lambda: torch.nested.nested_tensor()) + default_nested_tensor = torch.nested.nested_tensor([]) + default_tensor = torch.tensor([]) + # self.assertEqual(default_nested_tensor.nested_dim(), 1) + # self.assertEqual(default_nested_tensor.nested_size(), ()) + self.assertEqual(default_nested_tensor.dim(), default_tensor.dim()) + self.assertEqual(default_nested_tensor.layout, default_tensor.layout) + self.assertEqual(default_nested_tensor.device, default_tensor.device) + self.assertEqual(default_nested_tensor.dtype, default_tensor.dtype) + self.assertEqual( + default_nested_tensor.requires_grad, default_tensor.requires_grad + ) + self.assertIsNone(default_tensor.grad) + # TODO: Re-enable once we have a performance driven + # use case and implementation. + # self.assertEqual(default_nested_tensor.is_pinned(), + # default_tensor.is_pinned()) + + @torch.inference_mode() + def test_dim(self): + for constructor in _iter_constructors(): + a1 = constructor([]) + self.assertEqual(a1.dim(), 1) + a1 = constructor([torch.tensor(3.0)]) + self.assertEqual(a1.dim(), 1) + a1 = constructor([torch.tensor([1, 2, 3, 4])]) + self.assertEqual(a1.dim(), 2) + + @unittest.skipIf(IS_FBCODE, "numel is not virtual in fbcode.") + @torch.inference_mode() + def test_numel(self): + for constructor in _iter_constructors(): + a1 = constructor([]) + self.assertEqual(a1.numel(), 0) + a1 = constructor([torch.tensor(3.0), torch.tensor(4.0)]) + self.assertEqual(a1.numel(), 2) + a1 = constructor([torch.randn(2, 2, 2)]) + self.assertEqual(a1.numel(), 8) + a1 = constructor([torch.randn([1, 2, 3]), torch.randn(3, 2, 1)]) + self.assertEqual(a1.numel(), 12) + a1 = constructor([torch.randn([1, 1, 3]), torch.randn(3, 2, 4)]) + self.assertEqual(a1.numel(), 27) + a1 = constructor([torch.randn([5, 5, 5]), torch.randn(6, 6, 6)]) + self.assertEqual(a1.numel(), 341) + + # Interesting edge case + a1 = constructor([torch.randn([1, 2, 3]), torch.randn(1, 2, 0)]) + self.assertEqual(a1.numel(), 6) + + @torch.inference_mode() + def test_size(self): + for constructor in _iter_constructors(): + a1 = constructor([]) + self.assertRaisesRegex( + RuntimeError, + "NestedTensorImpl doesn't support sizes", + lambda: a1.size(), + ) + + def test_size_dim(self): + a = torch.nested.nested_tensor([]) + self.assertEqual(a.size(0), 0) + + a = torch.nested.nested_tensor([torch.tensor(1)]) + self.assertEqual(a.size(0), 1) + + a = torch.nested.nested_tensor([torch.tensor(1), torch.tensor(2)]) + self.assertEqual(a.size(0), 2) + + a = torch.nested.nested_tensor([torch.rand(1, 2), torch.rand(1, 8)]) + self.assertEqual(a.size(0), 2) + self.assertEqual(a.size(1), 1) + self.assertRaisesRegex( + RuntimeError, + "Given dimension 2 is irregular and does not have a size", + lambda: a.size(2), + ) + + a = torch.nested.nested_tensor([torch.rand(3, 4), torch.rand(5, 4)]) + self.assertEqual(a.size(0), 2) + self.assertRaisesRegex( + RuntimeError, + "Given dimension 1 is irregular and does not have a size", + lambda: a.size(1), + ) + self.assertEqual(a.size(2), 4) + + @unittest.skipIf(IS_FBCODE, "stride is not virtual in fbcode.") + @torch.inference_mode() + def test_stride(self): + for constructor in _iter_constructors(): + a1 = constructor([]) + self.assertRaisesRegex( + RuntimeError, + "NestedTensorImpl doesn't support strides", + lambda: a1.stride(), + ) -try: - from xpu_test_utils import XPUPatchForImport -except Exception as e: - from .xpu_test_utils import XPUPatchForImport - -with XPUPatchForImport(False): - from test_nestedtensor import ( - convert_jagged_to_nested_tensor, - get_tolerances, - random_nt, - random_nt_noncontiguous_pair, - TestNestedTensor, - TestNestedTensorAutograd, - TestNestedTensorDeviceType, - TestNestedTensorOpInfo, - TestNestedTensorSubclass, - ) - - def _test_to(self): + @unittest.skipIf(IS_FBCODE, "is_contiguous is not virtual in fbcode.") + @torch.inference_mode() + def test_is_contiguous(self): + # Test empty case + nt_empty = torch.nested.nested_tensor([]) + assert nt_empty.is_contiguous() + self.assertEqual(nt_empty, nt_empty.contiguous()) + + nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7)) + + # Test contiguous case + assert nt_contiguous.is_contiguous() + self.assertEqual(nt_contiguous, nt_contiguous.contiguous()) + + # Test non_contiguous case + assert not nt_noncontiguous.is_contiguous() + self.assertEqual(nt_contiguous, nt_noncontiguous.contiguous()) + + # Test querying by memory_format + self.assertTrue( + nt_contiguous.is_contiguous(memory_format=torch.contiguous_format) + ) + self.assertTrue( + not nt_noncontiguous.is_contiguous(memory_format=torch.contiguous_format) + ) + + @torch.inference_mode() + def test_repr_string(self): + a = torch.nested.nested_tensor([]) + expected = "nested_tensor([\n\n])" + self.assertEqual(str(a), expected) + self.assertEqual(repr(a), expected) + + a = torch.nested.nested_tensor([torch.tensor(1.0)]) + expected = "nested_tensor([\n tensor(1.)\n])" + self.assertEqual(str(a), expected) + self.assertEqual(repr(a), expected) + + a = torch.nested.nested_tensor([torch.tensor([[1, 2]]), torch.tensor([[4, 5]])]) + expected = "nested_tensor([\n tensor([[1, 2]]),\n tensor([[4, 5]])\n])" + self.assertEqual(str(a), expected) + self.assertEqual(repr(a), expected) + + def test_to_padded_tensor_on_empty_tensor(self): + nt = torch.nested.nested_tensor([]) + empty = torch.nested.to_padded_tensor(nt, 4) + self.assertEqual(empty, torch.tensor([])) + + def test_nested_namespace(self): + nt = torch.nested.nested_tensor([torch.randn(2, 3), torch.randn(4, 5)]) + result = nt.to_padded_tensor(4) + nested_namespace_result = torch.nested.to_padded_tensor(nt, 4) + self.assertEqual(result, nested_namespace_result) + + def test_to(self): ntensors = 4 nt = random_nt(torch.device("cpu"), torch.float32, ntensors, (4, 4)) @@ -53,11 +607,11 @@ def test_copy_behavior(t, non_blocking=False): ) devices = [t.device] - if t.device.type == "xpu": + if t.device.type == "cuda": if t.device.index == -1: - devices.append(f"xpu:{torch.xpu.current_device()}") - elif t.device.index == torch.xpu.current_device(): - devices.append("xpu") + devices.append(f"cuda:{torch.cuda.current_device()}") + elif t.device.index == torch.cuda.current_device(): + devices.append("cuda") for device in devices: self.assertIs(t, t.to(device, non_blocking=non_blocking)) self.assertIs(t, t.to(device, t.dtype, non_blocking=non_blocking)) @@ -83,22 +637,22 @@ def test_data_ptr(getter): test_data_ptr(lambda nt: nt.data_ptr()) - if torch.xpu.is_available(): + if torch.cuda.is_available(): for non_blocking in [True, False]: - for xpu in [ - "xpu", - "xpu:0" if torch.xpu.device_count() == 1 else "xpu:1", + for cuda in [ + "cuda", + "cuda:0" if torch.cuda.device_count() == 1 else "cuda:1", ]: - nt2 = random_nt(xpu, torch.float32, ntensors, (4, 4)) + nt2 = random_nt(cuda, torch.float32, ntensors, (4, 4)) test_copy_behavior(nt2, non_blocking) self.assertEqual( - nt2.device, nt2.to(xpu, non_blocking=non_blocking).device + nt2.device, nt2.to(cuda, non_blocking=non_blocking).device ) self.assertEqual( nt.device, nt2.to("cpu", non_blocking=non_blocking).device ) self.assertEqual( - nt2.device, nt.to(xpu, non_blocking=non_blocking).device + nt2.device, nt.to(cuda, non_blocking=non_blocking).device ) self.assertIs( torch.int32, @@ -115,7 +669,7 @@ def test_data_ptr(getter): self.assertIs(torch.int32, nt2.to(dtype=torch.int32).dtype) self.assertEqual(nt2.device, nt2.to(dtype=torch.int32).device) - def _test_copy_(self): + def test_copy_(self): ntensors = 4 nt = random_nt(torch.device("cpu"), torch.float32, ntensors, (4, 4)) nt_copy = torch.empty_like(nt) @@ -131,11 +685,11 @@ def _test_copy_(self): lambda: nt_error.copy_(nt), ) - if torch.xpu.is_available(): - nt = random_nt(torch.device("xpu"), torch.float32, ntensors, (4, 4)) + if torch.cuda.is_available(): + nt = random_nt(torch.device("cuda"), torch.float32, ntensors, (4, 4)) nt_copy = torch.empty_like(nt, device=torch.device("cpu")) nt_copy.copy_(nt, non_blocking=True) - torch.xpu.current_stream(torch.xpu.current_device()).synchronize() + torch.cuda.current_stream(torch.cuda.current_device()).synchronize() for nt_ub, nt_copy_ub in zip(nt.unbind(), nt_copy): self.assertEqual(nt_ub, nt_copy_ub) @@ -144,389 +698,6173 @@ def _test_copy_(self): for nt_ub, nt_copy_ub in zip(nt.unbind(), nt_copy): self.assertEqual(nt_ub, nt_copy_ub) - @skipMeta - def _test_device_checks(self, device): - nt = torch.nested.nested_tensor([], device=device) - is_xpu = "xpu" in str(device) - self.assertEqual(nt.is_xpu, is_xpu) + def test_fill_(self): + ntensors = 4 + nt = random_nt(torch.device("cpu"), torch.float32, ntensors, (4, 4)) + nt.fill_(10.0) + for nt_ub in nt.unbind(): + t = torch.empty_like(nt_ub) + t.fill_(10.0) + self.assertEqual(nt_ub, t) - @dtypes(torch.float, torch.float16, torch.double) - def _test_empty_like(self, device, dtype): + fill_tensor = torch.tensor([11.0]) + self.assertRaisesRegex( + RuntimeError, + "fill_ only supports 0-dimension value tensor", + lambda: nt.fill_(fill_tensor), + ) + + nt.fill_(fill_tensor[0]) + for nt_ub in nt.unbind(): + t = torch.empty_like(nt_ub) + t.fill_(11.0) + self.assertEqual(nt_ub, t) + + def test_zero_(self): ntensors = 4 - nt = random_nt(device, dtype, ntensors, (4, 4)) + nt = random_nt(torch.device("cpu"), torch.float32, ntensors, (4, 4)) + nt.zero_() + for nt_ub in nt.unbind(): + t = torch.empty_like(nt_ub) + t.fill_(0.0) + self.assertEqual(nt_ub, t) - # Create empty on same device as original nested tensor - nt_empty = torch.empty_like(nt) - assert nt.is_same_size(nt_empty) - self.assertEqual(nt.dtype, nt_empty.dtype) - self.assertEqual(nt.device, nt_empty.device) - self.assertEqual(nt.layout, nt_empty.layout) + @parametrize( + "func", + [torch.ones_like, torch.zeros_like, torch.randn_like], + name_fn=lambda f: f.__name__, + ) + def test_like_functions(self, func): + ntensors = 4 + nt = random_nt(torch.device("cpu"), torch.float32, ntensors, (4, 4)) + torch.manual_seed(1) + nt_like = func(nt) - if torch.xpu.is_available(): - if device == "cpu": - nt_xpu = torch.empty_like(nt, device="xpu") - self.assertEqual(torch.device("xpu").type, nt_xpu.device.type) - else: - nt_cpu = torch.empty_like(nt, device="cpu") - self.assertEqual(torch.device("cpu").type, nt_cpu.device.type) + torch.manual_seed(1) + for nt_ub in nt_like.unbind(): + t_like = func(nt_ub) + self.assertEqual(nt_ub, t_like) - # Check changing dtype of empty_like nested tensor output - dtype_set = {torch.float, torch.float16, torch.double} - for other_dtype in dtype_set - {dtype}: - nt_empty_other_dtype = torch.empty_like(nt, dtype=other_dtype) - self.assertEqual(nt.dtype, dtype) - self.assertEqual(nt_empty_other_dtype.dtype, other_dtype) - self.assertEqual(nt.device, nt_empty.device) - self.assertEqual(nt.layout, nt_empty.layout) + def test_cat(self): + # dim=0 success case + # No constraints on ragged structures matching. + x = random_nt_from_dims([5, None, 10]) + y = random_nt_from_dims([3, 4, None]) + output = torch.cat([x, y], dim=0) + for out_component, xy_component in zip( + output.unbind(), itertools.chain(x.unbind(), y.unbind()) + ): + self.assertEqual(out_component, xy_component) - # Create tensor for autograd - nt_empty_req_grad = torch.empty_like(nt, requires_grad=True) - self.assertEqual(nt_empty_req_grad.requires_grad, True) + # dim=-1 success case + # shape (B, *, D) + x = random_nt_from_dims([5, None, 10]) + # shape (B, *, D'); same structure as x but dim=-1 differs + y = random_nt_from_similar(x, dims=[-1, -1, 8]) + # should be shape (B, *, D + D') when supported + output = torch.cat([x, y], dim=-1) + for out_component, x_component, y_component in zip( + output.unbind(), x.unbind(), y.unbind() + ): + self.assertEqual( + out_component, torch.cat([x_component, y_component], dim=-1) + ) - # Test noncontiguous tensor does not fail to copy - nt_cont, nt_noncont = random_nt_noncontiguous_pair((2, 3, 6, 7)) - nt_empty = torch.empty_like(nt_cont) - assert nt_cont.is_same_size(nt_empty) - nt_empty_non_contig = torch.empty_like(nt_noncont) - assert nt_noncont.is_same_size(nt_empty_non_contig) + # dim between 0 and -1 success case + x = random_nt_from_dims([5, None, 2, 3]) + # same structure as x but dim=2 differs + y = random_nt_from_similar(x, dims=[-1, -1, 4, -1]) + output = torch.cat([x, y], dim=2) + for out_component, x_component, y_component in zip( + output.unbind(), x.unbind(), y.unbind() + ): + self.assertEqual( + out_component, torch.cat([x_component, y_component], dim=1) + ) - # Test the contiguous memory format option - nt_empty_contig = torch.empty_like( - nt_cont, memory_format=torch.contiguous_format - ) - assert nt_cont.is_same_size(nt_empty_contig) - assert nt_empty_contig.is_contiguous() + # error case: mixed NT / dense inputs + x = random_nt_from_dims([5, None, 2]) + y = torch.randn(5, 3, 2) + with self.assertRaisesRegex( + RuntimeError, "expected each tensor in given list to be nested" + ): + torch.cat([x, y], dim=-1) - nt_empty_non_contig = torch.empty_like( - nt_noncont, memory_format=torch.contiguous_format - ) - assert nt_noncont.is_same_size(nt_empty_non_contig) - assert nt_empty_non_contig.is_contiguous() + # error case: NTs with different dims + x = random_nt_from_dims([5, None, 2]) + y = random_nt_from_dims([5, None, 2, 3]) + with self.assertRaisesRegex( + RuntimeError, + "expected all nested tensors to have matching ragged structures outside of the concatenated dim", + ): + torch.cat([x, y], dim=-1) - # Test other memory formats fail - self.assertRaises( + # error case: non-contiguous NT + x, y = random_nt_noncontiguous_pair((2, 3, 4), dtype=torch.float32) + # transpose to put ragged dim next to batch dim + x, y = x.transpose(-2, -1), y.transpose(-2, -1) + with self.assertRaisesRegex( + RuntimeError, "only contiguous nested tensors are supported" + ): + torch.cat([x, y], dim=-1) + + # error case: multiple ragged dims in inputs + x = random_nt_from_dims([5, None, None, 2]) + y = random_nt_from_similar(x) + with self.assertRaisesRegex( RuntimeError, - lambda: torch.empty_like(nt_cont, memory_format=torch.channels_last), - ) - self.assertRaises( + "only nested tensors with a single ragged dim next to the batch dim are supported", + ): + torch.cat([x, y], dim=-1) + + # error case: ragged dim not next to batch dim + x = random_nt_from_dims([5, 2, None]) + y = random_nt_from_similar(x) + with self.assertRaisesRegex( RuntimeError, - lambda: torch.empty_like(nt_noncont, memory_format=torch.channels_last), + "only nested tensors with a single ragged dim next to the batch dim are supported", + ): + torch.cat([x, y], dim=1) + + # error case: NTs with different batch sizes + x = random_nt_from_dims([5, None, 2]) + y = random_nt_from_dims([3, None, 2]) + with self.assertRaisesRegex( + RuntimeError, + "expected all nested tensors to have matching ragged structures outside of the concatenated dim", + ): + torch.cat([x, y], dim=-1) + + # error case: NTs with different ragged structures + x = torch.nested.nested_tensor( + [ + torch.randn(2, 6), + torch.randn(4, 6), + torch.randn(5, 6), + ] ) - self.assertRaises( + y = torch.nested.nested_tensor( + [ + torch.randn(5, 6), + torch.randn(4, 6), + torch.randn(2, 6), + ] + ) + with self.assertRaisesRegex( RuntimeError, - lambda: torch.empty_like(nt_cont, memory_format=torch.channels_last_3d), + "expected all nested tensors to have matching ragged structures outside of the concatenated dim", + ): + torch.cat([x, y], dim=-1) + + # https://github.com/pytorch/pytorch/issues/161812 + def test_jagged_with_dim_error(self): + x = torch.nested.nested_tensor( + [torch.ones(3, 2, 3), torch.ones(4, 2, 3)], layout=torch.jagged ) - self.assertRaises( + with self.assertRaisesRegex( RuntimeError, - lambda: torch.empty_like(nt_noncont, memory_format=torch.channels_last_3d), + "not supported for NestedTensor on dim=0", + ): + torch.cat([x, x]) + with self.assertRaisesRegex( + RuntimeError, + "not supported for NestedTensor on dim=0", + ): + torch.stack([x, x]) + + def test_nested_view_from_buffer_overflow_errors(self): + buffer = torch.tensor([1]) + sizes = torch.tensor([[2**63 - 1], [2**63 - 1], [3]], dtype=torch.int64) + strides = torch.tensor( + [[0x41414141], [0x41414141], [0x41414141]], dtype=torch.int64 ) + offsets = torch.tensor( + [[0x41414141], [0x41414141], [0x41414141]], dtype=torch.int64 + ) + with self.assertRaisesRegex( + RuntimeError, + r"Storage size calculation overflowed with sizes=\[9223372036854775807\] and strides=\[1094795585\]", + ): + nt = torch._nested_view_from_buffer(buffer, sizes, strides, offsets) - @dtypes(torch.float32) - def _test_linear_backward_memory_usage(self, device, dtype): - # Verify that linear_backward() doesn't use more memory than it should - # for higher dim input sizes. - # See https://github.com/pytorch/pytorch/issues/141112 - B, D, max_seq_len = 64, 512, 100 - m = torch.nn.Linear(D, D, device=device) - nt = torch.nested.as_nested_tensor( - [ - torch.rand(size=[seq_len, D]) - for seq_len in torch.randint(max_seq_len, size=(B,)) - ], - layout=torch.jagged, - device=device, + +@markDynamoStrictTest +class TestNestedTensorDeviceType(NestedTensorTestCase): + # Helper function to generate a pair of random nested tensors + # the 2 nested tensors have same shapes + def random_nt_pair(self, device, dtype, num_tensors, max_dims): + ts1 = [] + ts2 = [] + for _ in range(num_tensors): + tensor_dims = tuple( + [ + torch.randint(low=0, high=max_dim, size=(1,)).item() + for max_dim in max_dims + ] + ) + t1 = torch.randn(tensor_dims, device=device, dtype=dtype) + t2 = torch.randn(tensor_dims, device=device, dtype=dtype) + ts1.append(t1) + ts2.append(t2) + return ( + torch.nested.nested_tensor(ts1, device=device, dtype=dtype), + torch.nested.nested_tensor(ts2, device=device, dtype=dtype), ) - # (B, j1, D) -> (B, j1, 1, D) for a higher dim input size - nt = nt.unsqueeze(-2) - # linear_backward() should not explode the max memory usage - torch.xpu.reset_max_memory_allocated() - m(nt).sum().backward() - # expect under a GB for max memory allocated - max_after_gb = torch.xpu.max_memory_allocated(0) // (1024**3) - self.assertEqual(max_after_gb, 0) + @dtypes(*floating_types_and_half()) + def test_detach(self, device, dtype): + a = torch.randn(2, 4, device=device, dtype=dtype, requires_grad=False) + b = torch.randn(5, 4, device=device, dtype=dtype, requires_grad=False) + x = torch.nested.nested_tensor([a, b], requires_grad=True) - @dtypes(torch.float32) - def _test_record_stream(self, device, dtype): - def _create_nt(): - values = torch.ones(1024, 4 * 1024, device="xpu") - offsets = torch.tensor([0, 500, 1024], device="xpu", dtype=torch.int64) - lengths = offsets.diff() - nt = torch.nested.nested_tensor_from_jagged(values, offsets, lengths) - data_ptrs = { - nt._values.data_ptr(), - nt._offsets.data_ptr(), - nt._lengths.data_ptr(), - } - return nt, data_ptrs - - def fn(record_stream): - nt, data_ptrs = _create_nt() - s = torch.xpu.Stream() - - with torch.xpu.stream(s): - # emulate doing something long via sleep - per_ms = 2e7 - torch.xpu._sleep(int(per_ms * 100)) - if record_stream: - nt.record_stream(s) - return data_ptrs + x_detach = x.detach() - # expect memory reuse when record_stream() is not run - data_ptrs = fn(record_stream=False) - nt, nt_data_ptrs = _create_nt() - self.assertEqual(data_ptrs, nt_data_ptrs) - del nt - torch.xpu.synchronize() - - # expect memory to be preserved (no reuse) when record_stream() is run - data_ptrs = fn(record_stream=True) - nt, nt_data_ptrs = _create_nt() - self.assertEqual(len(data_ptrs.intersection(nt_data_ptrs)), 0) + z = x_detach * 4 + self.assertFalse(x_detach.requires_grad) + self.assertFalse(z.requires_grad) - @dtypes(torch.float32) - def _test_construction_from_list(self, device, dtype): - from torch.fx.experimental.symbolic_shapes import is_nested_int + a = torch.randn(2, 4, device=device, dtype=dtype, requires_grad=True) + b = torch.randn(5, 4, device=device, dtype=dtype, requires_grad=True) + x = torch.nested.as_nested_tensor([a, b]) - # success case: single ragged dim anywhere but the batch dim - for nt_dim in [2, 3, 4]: - for ragged_dim in range(1, nt_dim): - B = 6 - shapes = [list(range(3, 3 + nt_dim - 1)) for _ in range(B)] - for b in range(B): - # subtract 1 to convert to component dim space - shapes[b][ragged_dim - 1] = torch.randint( - 2, 9, (1,), device=device, dtype=torch.int64 - ).item() + y = x * 2 + y = y.detach() + self.assertFalse(y.requires_grad) + self.assertIsNone(y.grad_fn) - components = [ - torch.randn(shape, device=device, dtype=dtype) for shape in shapes - ] - nt = torch.nested.nested_tensor(components, layout=torch.jagged) + z = x + y + torch.nested.to_padded_tensor(z, 0).sum().backward() + # This is an incorrect gradient, but we assume that's what the user + # wanted. detach() is an advanced option. + self.assertEqual(a.grad, torch.ones(2, 4, device=device, dtype=dtype)) + self.assertEqual(b.grad, torch.ones(5, 4, device=device, dtype=dtype)) - self.assertEqual(nt.dim(), nt_dim) - self.assertEqual(nt._ragged_idx, ragged_dim) - for d in range(nt_dim): - self.assertEqual(d == ragged_dim, is_nested_int(nt.shape[d])) + @dtypes(torch.float, torch.double, torch.half) + @parametrize("requires_grad", [False, True]) + @parametrize("weights_only", [False, True]) + def test_serialization(self, device, dtype, requires_grad, weights_only): + def compare_metadata(nt1, nt2): + self.assertEqual(nt1._nested_tensor_size(), nt2._nested_tensor_size()) + self.assertEqual(nt1._nested_tensor_strides(), nt2._nested_tensor_strides()) + self.assertEqual( + nt1._nested_tensor_storage_offsets(), + nt2._nested_tensor_storage_offsets(), + ) - # error case: empty list - with self.assertRaisesRegex( - RuntimeError, "Cannot construct a nested tensor from an empty tensor list" - ): - torch.nested.nested_tensor([], layout=torch.jagged) + nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7)) + for a in [nt_contiguous, nt_noncontiguous]: + buffer = io.BytesIO() + serialized = torch.save(a, buffer) + buffer.seek(0) + b = torch.load(buffer, weights_only=weights_only) + # should be both conceptually equal and metadata equivalent + self.assertEqual(a, b) + compare_metadata(a, b) + # should be conceptually equal but not necessarily metadata equivalent + self.assertEqual(b, nt_contiguous) + self.assertEqual(b, nt_noncontiguous) - # error case: list of zero-dim tensors - with self.assertRaisesRegex( - RuntimeError, - "Cannot construct a nested tensor from a list of zero-dim tensors", - ): - torch.nested.nested_tensor( - [ - torch.tensor(3.0, device=device, dtype=dtype), - torch.tensor(4.0, device=device, dtype=dtype), - torch.tensor(5.0, device=device, dtype=dtype), - ], - layout=torch.jagged, - ) + @dtypes(torch.float, torch.float16, torch.double) + def test_unbind_noncontiguous(self, device, dtype): + nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair( + (2, 3, 6, 7), device, dtype + ) + ub_contiguous = nt_contiguous.unbind() + ub_noncontiguous = nt_noncontiguous.unbind() + self.assertEqual(len(ub_contiguous), len(ub_noncontiguous)) + n = len(ub_contiguous) + for i in range(n): + self.assertEqual(ub_contiguous[i], ub_noncontiguous[i]) - # error case: multiple ragged dims - with self.assertRaisesRegex( - RuntimeError, - "Cannot represent given tensor list as a nested tensor with the jagged layout", - ): - torch.nested.nested_tensor( - [ - torch.randn(2, 3, device=device, dtype=dtype), - torch.randn(4, 5, device=device, dtype=dtype), - ], - layout=torch.jagged, - ) + @dtypes(torch.float) + @skipMeta + def test_to_then_from_padded_tensor_no_transform0213(self, device, dtype): + t = torch.randn(4, 4, 4, device=device, dtype=dtype) + ts = list(torch.unbind(t)) + ts[0] = ts[0][:-1] + nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) + padded = torch.nested.to_padded_tensor(nt, 0) - # error case: components on multiple devices - if "xpu" in device: - with self.assertRaisesRegex( - RuntimeError, - "When constructing a nested tensor, all tensors in list must be on the same device", - ): - torch.nested.nested_tensor( - [ - torch.randn(2, 3, device=device, dtype=dtype), - torch.randn(2, 4, device="cpu", dtype=dtype), - ], - layout=torch.jagged, - ) + nt_to = torch._nested_from_padded_and_nested_example(padded, nt) - # error case: components with multiple dtypes - with self.assertRaisesRegex( - RuntimeError, - "When constructing a nested tensor, all tensors in list must have the same dtype", - ): - torch.nested.nested_tensor( - [ - torch.randn(2, 3, device=device, dtype=dtype), - torch.randn(2, 4, device=device, dtype=torch.float64), - ], - layout=torch.jagged, - ) + for t1, t2 in zip(nt.unbind(), nt_to.unbind()): + self.assertEqual(t1, t2) + self.assertEqual(nt.device, nt_to.device) - # error case: components with multiple dims - with self.assertRaisesRegex( - RuntimeError, - "When constructing a nested tensor, all tensors in list must have the same dim", - ): - torch.nested.nested_tensor( - [ - torch.randn(2, 3, device=device, dtype=dtype), - torch.randn(2, 3, 4, device=device, dtype=dtype), - ], - layout=torch.jagged, - ) + @dtypes(torch.float) + @dtypesIfCUDA(torch.float, torch.half) + @skipMeta + @torch.inference_mode() + def test_layer_norm(self, device, dtype): + def _test(size): + # Simple shapes test + t0 = torch.randn(2, size, device=device, dtype=dtype, requires_grad=False) + t1 = torch.randn(2, size, device=device, dtype=dtype, requires_grad=False) + ts = [t0, t1, t0, t1] + nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) + layer_norm = torch.nn.LayerNorm(size, device=device, dtype=dtype) + nt_result = layer_norm(nt) + for nt_subresult, t in zip(nt_result.unbind(), ts): + t_result = layer_norm(t.reshape(1, -1, size).squeeze(0)) + self.assertEqual(nt_subresult, t_result) - def _test_index_put_error(self, device): - import subprocess + # More complex nt test with different lengths for each tensor + t0 = torch.randn(4, size, device=device, dtype=dtype, requires_grad=False) + t1 = torch.randn(10, size, device=device, dtype=dtype, requires_grad=False) + t2 = torch.randn(7, size, device=device, dtype=dtype, requires_grad=False) + ts = [t0, t1, t2, t0, t2] + nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) + layer_norm = torch.nn.LayerNorm(size, device=device, dtype=dtype) + nt_result = layer_norm(nt) + for nt_subresult, t in zip(nt_result.unbind(), ts): + t_result = layer_norm(t.reshape(1, -1, size).squeeze(0)) + self.assertEqual(nt_subresult, t_result) - with self.subTest(): - r = subprocess.call( - [ - sys.executable, - "-c", - """\ -import torch -offsets = torch.tensor([0, 2, 5, 7], device='xpu') -lengths = torch.tensor([2, 2, 2], device='xpu') -indices = [ - torch.tensor([0, 1, 2], device='xpu'), - torch.tensor([0, 2, 1], device='xpu'), - torch.tensor([0, 0, 0], device='xpu'), -] -a = torch.nested.nested_tensor_from_jagged( - torch.zeros(7, 3, device='xpu'), offsets, lengths -) -a[indices] = 1.0 -torch.xpu.synchronize() -""", - ] - ) - self.assertTrue(r != 0) + if size <= 128: + # Test with multidimensional tensors after irregular dim + # (run only with smaller dimensions to ensure fast execution) + t0 = torch.randn( + 4, size, size, 4, device=device, dtype=dtype, requires_grad=False + ) + t1 = torch.randn( + 10, size, size, 4, device=device, dtype=dtype, requires_grad=False + ) + t2 = torch.randn( + 7, size, size, 4, device=device, dtype=dtype, requires_grad=False + ) + ts = [t0, t1, t2, t0, t2] + nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) + layer_norm = torch.nn.LayerNorm( + (size, size, 4), device=device, dtype=dtype + ) + nt_result = layer_norm(nt) + for nt_subresult, t in zip(nt_result.unbind(), ts): + t_result = layer_norm(t.reshape(1, -1, size, size, 4).squeeze(0)) + self.assertEqual(nt_subresult, t_result) - @dtypes(torch.float16, torch.bfloat16, torch.float32) - def _test_sdpa(self, device, dtype): - batch_size = 1 - emb_dims = 128 - n_heads = 8 - head_dims = emb_dims // n_heads + # Test where the normalizing dimensions are not all + layer_norm = torch.nn.LayerNorm((size, 4), device=device, dtype=dtype) + nt_result = layer_norm(nt) + for nt_subresult, t in zip(nt_result.unbind(), ts): + t_result = layer_norm(t.reshape(1, -1, size, size, 4).squeeze(0)) + self.assertEqual(nt_subresult, t_result) - sen1 = torch.randn(11, emb_dims, dtype=dtype, device=device) - sen2 = torch.randn(13, emb_dims, dtype=dtype, device=device) + for size in (1024, 1023, 513, 512, 256, 128, 2, 4, 32): + _test(size) - query = torch.nn.Linear( - emb_dims, emb_dims, bias=False, device=device, dtype=dtype - ) - key = torch.nn.Linear( - emb_dims, emb_dims, bias=False, device=device, dtype=dtype + @dtypes(torch.float) + @dtypesIfCUDA(torch.float, torch.half) + @skipMeta + @torch.inference_mode() + def test_layer_norm_breaking(self, device, dtype): + size = 128 + t0 = torch.randn( + 4, size, size, 4, device=device, dtype=dtype, requires_grad=False ) - value = torch.nn.Linear( - emb_dims, emb_dims, bias=False, device=device, dtype=dtype + t1 = torch.randn( + 10, size, size, 4, device=device, dtype=dtype, requires_grad=False ) - - # Simplest case: 1 sentence, no batching - x_d1 = sen1.unsqueeze(0) - x_nt = torch.nested.as_nested_tensor([sen1], layout=torch.jagged) - - # See note below for why we detach here. - q_d1 = ( - query(x_d1) - .view(batch_size, -1, n_heads, head_dims) - .detach() - .requires_grad_(True) + t2 = torch.randn( + 7, size, size, 4, device=device, dtype=dtype, requires_grad=False ) - q_d1_t = q_d1.transpose(1, 2) - k_d1 = ( - key(x_d1) - .view(batch_size, -1, n_heads, head_dims) - .detach() - .requires_grad_(True) + ts = [t0, t1, t2, t0, t2] + nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) + layer_norm = torch.nn.LayerNorm((4, size, size, 4), device=device, dtype=dtype) + self.assertRaisesRegex( + RuntimeError, + "normalized_shape extends into irregular dimensions for the nested tensor", + lambda: layer_norm(nt), ) - k_d1_t = k_d1.transpose(1, 2) - v_d1 = ( - value(x_d1) - .view(batch_size, -1, n_heads, head_dims) - .detach() - .requires_grad_(True) + layer_norm = torch.nn.LayerNorm((size + 1, size, 4), device=device, dtype=dtype) + self.assertRaisesRegex( + RuntimeError, + "The shape at dimension 0", + lambda: layer_norm(nt), ) - v_d1_t = v_d1.transpose(1, 2) - q_nt = ( - query(x_nt) - .view(*x_nt.size()[0:2], n_heads, head_dims) - .detach() - .requires_grad_(True) + @parametrize("layout", [torch.strided, torch.jagged], name_fn=layout_name) + def test_embedding(self, device, layout): + inputs = [ + torch.randint(100, (L,), device=device, dtype=torch.int64) + for L in torch.randint(5, 50, (8,)) + ] + x = torch.nested.nested_tensor( + inputs, device=device, dtype=torch.int64, layout=layout ) - q_nt_t = q_nt.transpose(1, 2) - k_nt = ( - key(x_nt) - .view(*x_nt.size()[0:2], n_heads, head_dims) - .detach() - .requires_grad_(True) + emb = torch.nn.Embedding(100, 8, device=device) + y = emb(x) + if layout == torch.jagged: + y.backward(torch.randn_like(y)) + + @torch._dynamo.disable + def check(inputs, y): + ys = y.unbind() + for i, inp in enumerate(inputs): + self.assertEqual(emb(inp), ys[i]) + + check(inputs, y) + + @dtypes( + torch.int8, + torch.int16, + torch.int32, + torch.int64, + torch.uint8, + torch.float, + torch.float16, + torch.bfloat16, + torch.double, + ) + def test_jagged_max_dtypes(self, device, dtype): + x = torch.nested.nested_tensor( + [torch.arange(0, n, dtype=dtype, device=device) for n in (10, 20, 30)], + layout=torch.jagged, ) - k_nt_t = k_nt.transpose(1, 2) - v_nt = ( - value(x_nt) - .view(*x_nt.size()[0:2], n_heads, head_dims) - .detach() - .requires_grad_(True) + + result_max = x.max(dim=1) + expected_max = torch.tensor([9, 19, 29], dtype=dtype, device=device) + + self.assertEqual(result_max.values, expected_max) + + @dtypes( + torch.int8, + torch.int16, + torch.int32, + torch.int64, + torch.uint8, + torch.float, + torch.float16, + torch.bfloat16, + torch.double, + ) + def test_jagged_min_dtypes(self, device, dtype): + x = torch.nested.nested_tensor( + [torch.arange(0, n, dtype=dtype, device=device) for n in (10, 20, 30)], + layout=torch.jagged, ) - v_nt_t = v_nt.transpose(1, 2) - # High Precision Math Reference - q_d1_f32 = q_d1.to(torch.float32) - k_d1_f32 = k_d1.to(torch.float32) - v_d1_f32 = v_d1.to(torch.float32) - q_d1_f32_t = q_d1_f32.transpose(1, 2) - k_d1_f32_t = k_d1_f32.transpose(1, 2) - v_d1_f32_t = v_d1_f32.transpose(1, 2) - out_ref = torch.ops.aten._scaled_dot_product_attention_math( - q_d1_f32_t, k_d1_f32_t, v_d1_f32_t - )[0] - grads_ref = torch.autograd.grad(out_ref.sum(), (q_d1_f32, k_d1_f32, v_d1_f32)) + result_min = x.min(dim=1) + expected_min = torch.tensor([0, 0, 0], dtype=dtype, device=device) - # Low Precision Math Reference - out_lp_ref = torch.ops.aten._scaled_dot_product_attention_math( - q_d1_t, k_d1_t, v_d1_t - )[0] - grads_lp_ref = torch.autograd.grad(out_lp_ref.sum(), (q_d1, k_d1, v_d1)) + self.assertEqual(result_min.values, expected_min) - # Compute tolerances - output_ref_atol, output_ref_rtol = get_tolerances(out_ref, out_lp_ref) - # fudge factor of 1.7 for smaller GPUs e.g., A2, A16 - grad_q_ref_atol, grad_q_ref_rtol = get_tolerances( - grads_ref[0], grads_lp_ref[0], 1.7 + @dtypes( + torch.int8, + torch.int16, + torch.int32, + torch.int64, + torch.uint8, + torch.float, + torch.float16, + torch.bfloat16, + torch.double, + ) + def test_jagged_amax_dtypes(self, device, dtype): + x = torch.nested.nested_tensor( + [torch.arange(0, n, dtype=dtype, device=device) for n in (10, 20, 30)], + layout=torch.jagged, ) - grad_k_ref_atol, grad_k_ref_rtol = get_tolerances(grads_ref[1], grads_lp_ref[1]) - grad_v_ref_atol, grad_v_ref_rtol = get_tolerances(grads_ref[2], grads_lp_ref[2]) - grad_atols = [grad_q_ref_atol, grad_k_ref_atol, grad_v_ref_atol] - grad_rtols = [grad_q_ref_rtol, grad_k_ref_rtol, grad_v_ref_rtol] - attn_d1 = torch.nn.functional.scaled_dot_product_attention( - q_d1_t, k_d1_t, v_d1_t - ).transpose(1, 2) - attn_nt = torch.nn.functional.scaled_dot_product_attention( - q_nt_t, k_nt_t, v_nt_t - ).transpose(1, 2) + result_amax = x.amax(dim=1) + expected_amax = torch.tensor([9, 19, 29], dtype=dtype, device=device) - self.assertEqual( - attn_d1, - attn_nt.unbind()[0].unsqueeze(0), - atol=output_ref_atol, - rtol=output_ref_rtol, + self.assertEqual(result_amax, expected_amax) + + @dtypes( + torch.int8, + torch.int16, + torch.int32, + torch.int64, + torch.uint8, + torch.float, + torch.float16, + torch.bfloat16, + torch.double, + ) + def test_jagged_amin_dtypes(self, device, dtype): + x = torch.nested.nested_tensor( + [torch.arange(0, n, dtype=dtype, device=device) for n in (10, 20, 30)], + layout=torch.jagged, ) - # Simple case: 2 sentences, no extra params - x_d2 = sen2.unsqueeze(0) - x_nt = torch.nested.as_nested_tensor([sen1, sen2], layout=torch.jagged) + result_amin = x.amin(dim=1) + expected_amin = torch.tensor([0, 0, 0], dtype=dtype, device=device) - # NB: we make sure the leaf tensor we compute gradients for is the view-ed tensor before - # it is transposed. This is because today we cannot backward through view or unbind a + self.assertEqual(result_amin, expected_amin) + + @dtypes( + torch.int8, + torch.int16, + torch.int32, + torch.int64, + torch.uint8, + torch.float, + torch.float16, + torch.bfloat16, + torch.double, + ) + def test_jagged_argmax_dtypes(self, device, dtype): + x = torch.nested.nested_tensor( + [torch.arange(0, n, dtype=dtype, device=device) for n in (10, 20, 30)], + layout=torch.jagged, + ) + + result_argmax = x.argmax(dim=1) + expected_argmax = torch.tensor([9, 19, 29], dtype=torch.long, device=device) + + self.assertEqual(result_argmax, expected_argmax) + + @dtypes( + torch.int8, + torch.int16, + torch.int32, + torch.int64, + torch.uint8, + torch.float, + torch.float16, + torch.bfloat16, + torch.double, + ) + def test_jagged_argmin_dtypes(self, device, dtype): + x = torch.nested.nested_tensor( + [torch.arange(0, n, dtype=dtype, device=device) for n in (10, 20, 30)], + layout=torch.jagged, + ) + + result_argmin = x.argmin(dim=1) + expected_argmin = torch.tensor([0, 0, 0], dtype=torch.long, device=device) + + self.assertEqual(result_argmin, expected_argmin) + + @skipMeta + @torch.inference_mode() + @dtypes(*floating_types_and_half()) + def test_masked_fill(self, device, dtype): + # nested tensor * nested tensor + (nt, mask) = self.random_nt_pair(device, dtype, 4, (4, 4)) + mask = torch.nested.nested_tensor([m < 0 for m in mask.unbind()]) + ref = torch.nested.nested_tensor( + [t.masked_fill(m, 0) for (t, m) in zip(nt.unbind(), mask.unbind())] + ) + out = nt.masked_fill(mask, 0) + self.assertEqual(ref, out) + + @dtypes(torch.float, torch.float16) + def test_to_padded_tensor_simple(self, device, dtype): + t = torch.randn(4, 4, 4, device=device, dtype=dtype) + ts = list(torch.unbind(t)) + ts[0] = ts[0][:-1] + nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) + for padding_value in (0, 1): + padded = torch.nested.to_padded_tensor(nt, padding_value) + + correct_output = t.clone() + if padding_value == 0: + correct_output[0][-1] = torch.zeros_like(correct_output[0][-1]) + else: + correct_output[0][-1] = torch.ones_like(correct_output[0][-1]) + + self.assertEqual(padded, correct_output) + self.assertEqual(padded.device, torch.device(device)) + self.assertEqual(padded.dtype, dtype) + + @dtypes(torch.float, torch.float16) + def test_to_padded_tensor_output_size(self, device, dtype): + t = torch.randn(4, 4, 4, device=device, dtype=dtype) + output_size = (4, 6, 5) + ts = list(torch.unbind(t)) + ts[0] = ts[0][:-1] + nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) + for padding_value in (0, 1): + padded = torch.nested.to_padded_tensor( + nt, padding_value, output_size=output_size + ) + correct_output = ( + torch.ones(output_size, device=device, dtype=dtype) * padding_value + ) + correct_output[:4:, :4, :4] = t.clone() + if padding_value == 0: + correct_output[0][3] = torch.zeros_like(correct_output[0][3]) + else: + correct_output[0][3] = torch.ones_like(correct_output[0][3]) + + self.assertEqual(padded, correct_output) + self.assertEqual(padded.device, torch.device(device)) + self.assertEqual(padded.dtype, dtype) + + @dtypes(torch.float, torch.float16, torch.double) + def test_to_padded_tensor_dim2(self, device, dtype): + ts = [ + torch.randn(160, device=device, dtype=dtype), + torch.randn(1240, device=device, dtype=dtype), + torch.randn(2400, device=device, dtype=dtype), + ] + nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) + pad = 42 + correct_output = [] + for t in ts: + next_output = torch.ones_like(ts[2]) * pad + correct_output.append(next_output) + next_output[: t.size(0)].copy_(t) + correct_output = torch.stack(correct_output) + padded = torch.nested.to_padded_tensor(nt, pad) + self.assertEqual(padded, correct_output) + + @dtypes(torch.float, torch.float16, torch.double) + def test_to_padded_tensor_dim3(self, device, dtype): + ts = [ + torch.randn(16, 21, device=device, dtype=dtype), + torch.randn(24, 32, device=device, dtype=dtype), + torch.randn(40, 53, device=device, dtype=dtype), + ] + nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) + pad = 42 + correct_output = [] + for t in ts: + next_output = torch.ones_like(ts[2]) * pad + correct_output.append(next_output) + next_output[: t.size(0), : t.size(1)].copy_(t) + correct_output = torch.stack(correct_output) + padded = torch.nested.to_padded_tensor(nt, pad) + self.assertEqual(padded, correct_output) + + @dtypes(torch.float, torch.float16, torch.double) + def test_to_padded_tensor_dim4(self, device, dtype): + ts = [ + torch.randn(16, 21, 13, device=device, dtype=dtype), + torch.randn(24, 32, 14, device=device, dtype=dtype), + torch.randn(40, 53, 16, device=device, dtype=dtype), + ] + nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) + pad = 42 + correct_output = [] + for t in ts: + next_output = torch.ones_like(ts[2]) * pad + correct_output.append(next_output) + next_output[: t.size(0), : t.size(1), : t.size(2)].copy_(t) + correct_output = torch.stack(correct_output) + padded = torch.nested.to_padded_tensor(nt, pad) + self.assertEqual(padded, correct_output) + + # TODO: test noncontiguous to_padded_tensor + # For now this tests the functionality of noncontiguous_to_padded_tensor + # and the error message of to_padded_tensor + # since to_padded_tensor does not support noncontiguous buffer yet + @dtypes(torch.float, torch.float16, torch.double) + @torch.inference_mode() + def test_to_padded_tensor_noncontiguous(self, device, dtype): + nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair( + (2, 3, 6, 7), device, dtype + ) + # test noncontiguous_to_padded_tensor functionality + self.assertEqual( + torch.nested.to_padded_tensor(nt_contiguous, 0.0), + noncontiguous_to_padded_tensor(nt_noncontiguous), + ) + # test to_padded_tensor error message + self.assertRaisesRegex( + RuntimeError, + r"for now to_padded_tensor only supports contiguous nested tensor", + lambda: torch.nested.to_padded_tensor(nt_noncontiguous, 0.0), + ) + + @skipMeta + def test_device_checks(self, device): + nt = torch.nested.nested_tensor([], device=device) + is_cuda = "cuda" in str(device) + self.assertEqual(nt.is_cuda, is_cuda) + + @skipIfTorchDynamo("Not a suitable test for TorchDynamo") + def test_share_memory(self, device): + a = torch.randn(3, 4, device=device) + b = torch.randn(5, 4, device=device) + nt = torch.nested.nested_tensor([a, b], layout=torch.jagged) + + # Guard CUDA tensors + if device.split(":")[0] in ["cuda", "xpu"]: + result = nt.share_memory_() + self.assertIs(result, nt) + return + + result = nt.share_memory_() + self.assertIs(result, nt) + + # Verify in shared memory + self.assertTrue(nt.is_shared()) + + @dtypes(torch.float, torch.float16, torch.double) + def test_nested_tensor_indexing(self, device, dtype): + # edge case: empty nested tensor + nt0 = torch.nested.nested_tensor([]) + self.assertRaises(IndexError, lambda: nt0[0]) + # normal case + x0 = torch.randn((2, 5), device=device, dtype=dtype) + x1 = torch.randn((3, 4), device=device, dtype=dtype) + nt = torch.nested.nested_tensor([x0, x1]) + # single index: only support integer in the batch dimension + self.assertEqual(nt[0], x0) + self.assertEqual(nt[-1], x1) + self.assertRaises(IndexError, lambda: nt[2]) + self.assertRaises(IndexError, lambda: nt[-3]) + self.assertRaises(NotImplementedError, lambda: nt[:]) + self.assertEqual(nt[...], nt) + # tuple of indices: only support integer in the batch dimension + # + all possible indexing in the original tensor dimensions + self.assertEqual(nt[0, 0, 0], x0[0, 0]) + self.assertEqual(nt[0, 1, :], x0[1, :]) + self.assertEqual(nt[1, ...], x1) + self.assertRaises(IndexError, lambda: nt[1, 4, 2]) + self.assertRaises(NotImplementedError, lambda: nt[:, 1, 1]) + # test select on non-batch dimensions + self.assertEqual(nt.select(1, 0)[0], x0.select(0, 0)) + self.assertEqual(nt.select(1, 0)[1], x1.select(0, 0)) + self.assertRaises(IndexError, lambda: nt.select(1, 3)) + self.assertEqual(nt.select(2, 0)[0], x0.select(1, 0)) + self.assertEqual(nt.select(2, 0)[1], x1.select(1, 0)) + self.assertRaises(IndexError, lambda: nt.select(2, 5)) + # make sure indexing returns a view + nt[0].fill_(100.0) + answer = torch.tensor(100.0, device=device, dtype=dtype).expand((2, 5)) + self.assertEqual(nt[0], answer) + nt[1, 1, :].fill_(200.0) + answer = torch.tensor(200.0, device=device, dtype=dtype).expand(4) + self.assertEqual(nt[1, 1, :], answer) + + # Test that indexing works when requires_grad_(True) + # previously this was failing because the backward kernel for select.int uses .sizes() + nt = torch.nested.nested_tensor([x0, x1]).requires_grad_(True) + self.assertEqual(nt[0], x0) + self.assertEqual(nt[-1], x1) + grad_x0 = torch.randn((2, 5), device=device, dtype=dtype) + nt[0].backward(grad_x0) + expected_grad = torch.nested.nested_tensor( + [grad_x0, torch.zeros((3, 4), device=device, dtype=dtype)] + ) + self.assertEqual(nt.grad, expected_grad) + + @parametrize( + "func", + [ + subtest(torch.nn.functional.relu, name="relu"), + subtest(torch.nn.functional.relu_, name="relu_"), + subtest(torch.nn.functional.gelu, name="gelu"), + subtest(torch._C._nn.gelu_, name="gelu_"), + subtest(torch.tanh, name="tanh"), + subtest(torch.tanh_, name="tanh_"), + subtest(torch.neg, name="neg"), + subtest(torch.nn.functional.silu, name="silu"), + subtest(partial(torch.nn.functional.silu, inplace=True), name="silu_"), + subtest(torch.abs, name="abs"), + subtest(torch.abs_, name="abs_"), + subtest(torch.sgn, name="sgn"), + subtest(torch.logical_not, name="logical_not"), + subtest(torch.sin, name="sin"), + subtest(torch.cos, name="cos"), + subtest(torch.isinf, name="isinf"), + subtest(torch.isposinf, name="isposinf"), + subtest(torch.isneginf, name="isneginf"), + subtest(torch.isnan, name="isnan"), + subtest(torch.sqrt, name="sqrt"), + ], + ) + def test_unary_funcs(self, device, func): + nt, nt_noncontiguous = random_nt_noncontiguous_pair( + (2, 3, 6, 7), device=device, dtype=torch.float32 + ) + nested_result = func(nt) + self.assertTrue(nested_result.is_nested) + for t, t_res in zip(nt.unbind(), nested_result.unbind()): + self.assertEqual(func(t), t_res) + self.assertRaisesRegex( + RuntimeError, + "NestedTensor must be contiguous to get buffer.", + lambda: func(nt_noncontiguous), + ) + + def test_is_any_true_jagged(self, device): + B, Fin = 2, 6 + start = torch.zeros(B, dtype=torch.int64, device=device) + lengths = torch.tensor([3, 2], dtype=torch.int64, device=device) + + # NestedTensor reduction should operate on same data as .values(). + with self.subTest("dispatch_matches_values_buffer"): + cond = torch.tensor( + [ + [True, False, False, True, True, False], + [False, False, True, False, False, False], + ], + dtype=torch.bool, + device=device, + ) + nt = torch.nested.narrow( + cond, dim=1, start=start, length=lengths, layout=torch.jagged + ) + out_nt = torch.ops.aten._is_any_true.default(nt).item() + out_vals = torch.ops.aten._is_any_true.default(nt.values()).item() + self.assertEqual(out_nt, out_vals) + + # Verify jagged boolean behavior. + with self.subTest("all_false_returns_false"): + cond_false = torch.zeros(B, Fin, dtype=torch.bool, device=device) + nt_false = torch.nested.narrow( + cond_false, dim=1, start=start, length=lengths, layout=torch.jagged + ) + self.assertFalse(torch.ops.aten._is_any_true.default(nt_false).item()) + + with self.subTest("one_true_returns_true"): + cond_mixed = torch.zeros(B, Fin, dtype=torch.bool, device=device) + cond_mixed[0, 0] = True + nt_mixed = torch.nested.narrow( + cond_mixed, dim=1, start=start, length=lengths, layout=torch.jagged + ) + self.assertTrue(torch.ops.aten._is_any_true.default(nt_mixed).item()) + + def test_is_all_true_jagged(self, device): + B, Fin = 2, 6 + start = torch.zeros(B, dtype=torch.int64, device=device) + lengths = torch.tensor([3, 2], dtype=torch.int64, device=device) + + # NestedTensor reduction should operate on same data as .values(). + with self.subTest("dispatch_matches_values_buffer"): + cond = torch.tensor( + [ + [True, True, True, False, False, False], + [True, True, False, False, False, False], + ], + dtype=torch.bool, + device=device, + ) + nt = torch.nested.narrow( + cond, dim=1, start=start, length=lengths, layout=torch.jagged + ) + out_nt = torch.ops.aten._is_all_true.default(nt).item() + out_vals = torch.ops.aten._is_all_true.default(nt.values()).item() + self.assertEqual(out_nt, out_vals) + + # Verify jagged boolean behavior. + with self.subTest("all_true_returns_true"): + cond_true = torch.ones(B, Fin, dtype=torch.bool, device=device) + nt_true = torch.nested.narrow( + cond_true, dim=1, start=start, length=lengths, layout=torch.jagged + ) + self.assertTrue(torch.ops.aten._is_all_true.default(nt_true).item()) + + with self.subTest("any_false_returns_false"): + cond_mixed = torch.ones(B, Fin, dtype=torch.bool, device=device) + cond_mixed[0, 1] = False + nt_mixed = torch.nested.narrow( + cond_mixed, dim=1, start=start, length=lengths, layout=torch.jagged + ) + self.assertFalse(torch.ops.aten._is_all_true.default(nt_mixed).item()) + + @parametrize("func", [subtest(torch.ge, name="ge"), subtest(torch.eq, name="eq")]) + def test_binary_ops_with_scalar(self, device, func): + nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair( + (2, 3, 6, 7), device=device, dtype=torch.float32 + ) + scalar = 0.0 + + # should work regardless of contiguity + for nt in (nt_contiguous, nt_noncontiguous): + nested_result = func(nt, scalar) + self.assertTrue(nested_result.is_nested) + for t, t_res in zip(nt.unbind(), nested_result.unbind()): + self.assertEqual(func(t, scalar), t_res) + + @dtypes(*floating_types_and_half()) + def test_nested_tensor_chunk(self, device, dtype): + # Transformer use case + a = torch.randn(3, 3 * 4, device=device, dtype=dtype) + b = torch.randn(2, 3 * 4, device=device, dtype=dtype) + c = torch.randn(1, 3 * 4, device=device, dtype=dtype) + a_chunks = a.chunk(3, dim=-1) + b_chunks = b.chunk(3, dim=-1) + c_chunks = c.chunk(3, dim=-1) + + a_nt = [a_chunks[0], b_chunks[0], c_chunks[0]] + b_nt = [a_chunks[1], b_chunks[1], c_chunks[1]] + c_nt = [a_chunks[2], b_chunks[2], c_chunks[2]] + + nt = torch.nested.nested_tensor([a, b, c]) + chunked = nt.chunk(3, dim=-1) + + self.assertEqual(chunked[0], torch.nested.nested_tensor(a_nt)) + self.assertEqual(chunked[1], torch.nested.nested_tensor(b_nt)) + self.assertEqual(chunked[2], torch.nested.nested_tensor(c_nt)) + + for chunk in chunked: + self.assertFalse(chunk.is_contiguous()) + + # Failure chunking on ragged dimensions + self.assertRaisesRegex( + RuntimeError, + "Chunk for nested tensors is currently only supported for the last dimension.", + lambda: torch.chunk(nt, 5, dim=1), + ) + self.assertRaisesRegex( + RuntimeError, + "Chunk for nested tensors is currently only supported for the last dimension.", + lambda: torch.chunk(nt, 5, dim=0), + ) + + # Failure on non-contiguous nt + _, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3), device, dtype) + self.assertRaisesRegex( + RuntimeError, + "chunk expects `self` to be contiguous.", + lambda: torch.chunk(nt_noncontiguous, 5, dim=-1), + ) + + # Failure when calling non divisible n_chunks + self.assertRaisesRegex( + RuntimeError, + "Chunk for nested tensors is only supported for " + "nested tensors with trailing dimension divisible by chunks.", + lambda: torch.chunk(nt, 5, dim=-1), + ) + + # Failure when calling backward on a chunk + a = torch.randn(3, 3 * 4, device=device, dtype=dtype, requires_grad=True) + b = torch.randn(2, 3 * 4, device=device, dtype=dtype, requires_grad=True) + nt_grad = torch.nested.as_nested_tensor([a, b]) + chunked = torch.chunk(nt_grad, 2, dim=-1) + self.assertRaisesRegex( + RuntimeError, + "Nested Strided Tensor doesn't support chunk backward.", + lambda: chunked[0].backward(chunked[0].clone()), + ) + + @dtypes(*floating_types_and_half()) + def test_nested_tensor_split_with_sizes(self, device, dtype): + a = torch.randn(3, 20, device=device, dtype=dtype) + b = torch.randn(2, 20, device=device, dtype=dtype) + c = torch.randn(1, 20, device=device, dtype=dtype) + + split_sizes = [4, 6, 10] + a_splits = a.split_with_sizes(split_sizes, dim=-1) + b_splits = b.split_with_sizes(split_sizes, dim=-1) + c_splits = c.split_with_sizes(split_sizes, dim=-1) + + nt = torch.nested.nested_tensor([a, b, c]) + nt_splits = nt.split_with_sizes(split_sizes, dim=-1) + + for i, nt_split in enumerate(nt_splits): + self.assertEqual( + nt_split, + torch.nested.nested_tensor([a_splits[i], b_splits[i], c_splits[i]]), + ) + dense_strides = torch.stack( + [ + torch.tensor(a_splits[i].stride()), + torch.tensor(b_splits[i].stride()), + torch.tensor(c_splits[i].stride()), + ] + ) + self.assertEqual(nt_split._nested_tensor_strides(), dense_strides) + self.assertFalse(nt_split.is_contiguous()) + + # Failure calling on ragged dimensions + self.assertRaisesRegex( + RuntimeError, + "split_with_sizes for nested tensors is currently only supported for the last dimension.", + lambda: torch.split_with_sizes(nt, split_sizes, dim=1), + ) + + # Failure calling on non-last dimension + self.assertRaisesRegex( + RuntimeError, + "split_with_sizes for nested tensors is currently only supported for the last dimension.", + lambda: torch.split_with_sizes(nt, split_sizes, dim=0), + ) + + # Failure on non-contiguous nt + _, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3), device, dtype) + self.assertRaisesRegex( + RuntimeError, + "split_with_sizes expects `self` to be contiguous.", + lambda: torch.split_with_sizes(nt_noncontiguous, split_sizes, dim=-1), + ) + + # Failure when calling with split_sizes that don't cover the full dim size + bad_split_sizes = [4, 6, 9] # don't add up to 20 + self.assertRaisesRegex( + RuntimeError, + "split_with_sizes expects split_sizes to sum exactly to 20", + lambda: torch.split_with_sizes(nt, bad_split_sizes, dim=-1), + ) + + @dtypes(torch.float, torch.float16, torch.double) + @torch.inference_mode() + def test_nested_tensor_indexing_noncontiguous(self, device, dtype): + nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair( + (2, 3, 6, 7), device, dtype + ) + self.assertEqual(nt_contiguous.size(0), nt_noncontiguous.size(0)) + n = nt_contiguous.size(0) + for i in range(n): + self.assertEqual(nt_contiguous[i], nt_noncontiguous[i]) + + @dtypes(torch.float, torch.float16) + @skipMeta + @torch.inference_mode() + @parametrize("transpose", [True, False]) + def test_nested_tensor_add(self, device, dtype, transpose): + if transpose: + a = torch.randn(2, 2, 2, device=device, dtype=dtype) + b = torch.rand(2, 2, 2, device=device, dtype=dtype) + c = a.transpose(-1, -2).contiguous() + d = b.transpose(-1, -2).contiguous() + nt1 = torch.nested.nested_tensor([a, b, a, b]) + nt2 = torch.nested.nested_tensor([c, d, c, d]).transpose(-1, -2) + else: + (nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4)) + ref = torch.nested.nested_tensor( + [t1 + t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())] + ) + out = nt1 + nt2 + self.assertEqual(ref, out) + + @dtypes(torch.float, torch.float16) + @skipMeta + @torch.inference_mode() + @parametrize("transpose", [True, False]) + def test_nested_tensor_sub(self, device, dtype, transpose): + if transpose: + a = torch.randn(2, 2, 2, device=device, dtype=dtype) + b = torch.rand(2, 2, 2, device=device, dtype=dtype) + c = a.transpose(-1, -2).contiguous() + d = b.transpose(-1, -2).contiguous() + nt1 = torch.nested.nested_tensor([a, b, a, b]) + nt2 = torch.nested.nested_tensor([c, d, c, d]).transpose(-1, -2) + else: + (nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4)) + ref = torch.nested.nested_tensor( + [t1 - t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())] + ) + out = nt1 - nt2 + self.assertEqual(ref, out) + + @onlyOn(["cuda", "xpu"]) + @dtypes(torch.float, torch.float16) + @torch.inference_mode() + @parametrize("embedding_dim", [8, 128, 256, 384]) + def test_nested_tensor_dense_elementwise(self, device, dtype, embedding_dim): + def _test_add_mul(nt, t): + ref_add = torch.nested.nested_tensor( + [t1 + t2 for (t1, t2) in zip(nt.unbind(), t.unbind())] + ) + ref_mul = torch.nested.nested_tensor( + [t1 * t2 for (t1, t2) in zip(nt.unbind(), t.unbind())] + ) + self.assertEqual(nt.add(t), ref_add) + self.assertEqual(nt.mul(t), ref_mul) + + batch_size = 32 + seq_lens = torch.randint(low=0, high=10, size=(batch_size,)) + + # [B, *, D], [B, 1, D] case + ts = [torch.randn((seq_len, embedding_dim)) for seq_len in seq_lens] + nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) + t = torch.randn((batch_size, 1, embedding_dim), device=device, dtype=dtype) + _test_add_mul(nt, t) + + # [B, *], [B, 1] case + ts = [torch.randn(seq_len) for seq_len in seq_lens] + nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) + t = torch.randn((batch_size, 1), device=device, dtype=dtype) + _test_add_mul(nt, t) + + @dtypes(torch.float, torch.float16) + @skipMeta + @torch.inference_mode() + def test_nested_tensor_mul(self, device, dtype): + # nested tensor * nested tensor + (nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4)) + ref = torch.nested.nested_tensor( + [t1 * t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())] + ) + out = nt1 * nt2 + self.assertEqual(ref, out) + # nested tensor * scalar + number = 10.0 + scalar = torch.tensor(number).to(dtype).to(device) + ref = torch.nested.nested_tensor([t * number for t in nt1.unbind()]) + out_number0 = nt1 * number + out_number1 = number * nt1 + out_scalar0 = nt1 * scalar + out_scalar1 = scalar * nt1 + self.assertEqual(out_number0, ref) + self.assertEqual(out_number1, ref) + self.assertEqual(out_scalar0, ref) + self.assertEqual(out_scalar1, ref) + # error case: numel == 1 but dim > 0 + vector = torch.tensor([number]).to(dtype).to(device) + self.assertRaisesRegex( + RuntimeError, + "Expected both self and other to be nested, but got a nested self and non-nested other", + lambda: nt1.mul(vector), + ) + self.assertRaisesRegex( + RuntimeError, + "Expected both self and other to be nested, but got a non-nested self and nested other", + lambda: vector.mul(nt1), + ) + + @dtypes(torch.float, torch.float16) + @skipMeta + @torch.inference_mode() + def test_nested_tensor_div(self, device, dtype): + nt, nt2 = self.random_nt_pair(device, dtype, 4, (4, 4)) + scale = 4.0 + ref = torch.nested.nested_tensor([t / scale for t in nt.unbind()]) + out = nt / 4.0 + self.assertEqual(ref, out) + ref_transposed = ref.transpose(1, 2) + out = nt.transpose(1, 2) / 4.0 + self.assertEqual(ref_transposed, out) + + ref = torch.nested.nested_tensor( + [t / t2 for (t, t2) in zip(nt.unbind(), nt2.unbind())] + ) + out = nt / nt2 + self.assertEqual(ref, out) + + out = nt.transpose(1, 2) / nt2.transpose(1, 2) + self.assertEqual(ref.transpose(1, 2), out) + + nt_transpose_copy = torch.nested.nested_tensor( + [t.transpose(0, 1) for t in nt.unbind()] + ) + + self.assertRaisesRegex( + RuntimeError, + "div requires strides to match when given NestedTensors", + lambda: nt_transpose_copy.transpose(1, 2) / nt2, + ) + + nt = torch.nested.nested_tensor( + [torch.randn(i, 4) for i in [3, 4, 5]], device=device, dtype=dtype + ) + nt_chunks = nt.chunk(2, -1) + self.assertRaisesRegex( + RuntimeError, + "div requires offsets to match when given NestedTensors", + lambda: nt_chunks[0] / nt_chunks[1], + ) + + @dtypes(torch.float, torch.float16) + @skipMeta + @torch.inference_mode() + def test_nested_tensor_add_in_place(self, device, dtype): + (nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4)) + ref = torch.nested.nested_tensor( + [t1 + t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())] + ) + nt1 += nt2 + self.assertEqual(ref, nt1) + + @dtypes(torch.float, torch.float16) + @skipMeta + @torch.inference_mode() + def test_nested_tensor_mul_in_place(self, device, dtype): + # nested tensor * nested tensor + (nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4)) + ref = torch.nested.nested_tensor( + [t1 * t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())] + ) + nt1 *= nt2 + self.assertEqual(ref, nt1) + # nested tensor * scalar + number = 10.0 + scalar = torch.tensor(number).to(dtype).to(device) + ref = torch.nested.nested_tensor([t * number for t in nt1.unbind()]) + out_number = nt1.clone() + out_number *= number + out_scalar = nt1.clone() + out_scalar *= scalar + self.assertEqual(out_number, ref) + self.assertEqual(out_scalar, ref) + self.assertRaisesRegex( + RuntimeError, + r"output with shape \[.*\] doesn't match the broadcast shape \[.*\]", + lambda: scalar.mul_(nt1), + ) + # error case: numel == 1 but dim > 0 + vector = torch.tensor([number]).to(dtype).to(device) + self.assertRaisesRegex( + RuntimeError, + "Expected both self and other to be nested, but got a nested self and non-nested other", + lambda: nt1.mul_(vector), + ) + self.assertRaisesRegex( + RuntimeError, + "Expected both self and other to be nested, but got a non-nested self and nested other", + lambda: vector.mul_(nt1), + ) + + @onlyCPU + @skipMeta + @dtypes(torch.float) + def test_nested_tensor_sum_dim(self, device, dtype): + params = ((2, (1, 1)), ((4), (4, 4)), (10, (3, 5, 7))) + + def test_sum(device, dtype, ntensors, max_sizes, dim, keepdim=True): + nt = random_nt(device, dtype, ntensors, max_sizes, require_non_empty=False) + nt2 = nt.clone() + ub2 = nt2.unbind() + nt.requires_grad_(True) + [t.requires_grad_(True) for t in ub2] + nt_sum = nt.sum(dim=dim, keepdim=keepdim) + ub2_sum = [t.sum(-1, keepdim=keepdim) for t in ub2] + self.assertEqual(nt_sum, torch.nested.nested_tensor(ub2_sum)) + + # test backward + # generate gradient tensor that has the same size as the output + size = nt_sum._nested_tensor_size() + gt2 = [] + for i in range(ntensors): + gt2.append(torch.randn(size[i].tolist(), device=device, dtype=dtype)) + gt = torch.nested.nested_tensor(gt2).clone() + nt_sum.backward(gt) + for t2, g2 in zip(ub2_sum, gt2): + t2.backward(g2) + self.assertEqual(nt.grad, torch.nested.nested_tensor([t.grad for t in ub2])) + return + + for ntensors, max_sizes in params: + test_sum(device, dtype, ntensors, max_sizes, len(max_sizes)) + + # Test error inputs + with self.assertRaisesRegex( + RuntimeError, "NestedTensor can only be reduced across the last" + ): + torch.nested.nested_tensor( + [torch.tensor([3, 4, 5]), torch.tensor([1, 2])] + ).sum(0, keepdim=True) + + with self.assertRaisesRegex( + RuntimeError, "NestedTensor only allows reduction of a single" + ): + torch.nested.nested_tensor( + [torch.tensor([[3, 4, 5]]), torch.tensor([[1, 2]])] + ).sum([0, 1], keepdim=True) + + with self.assertRaisesRegex( + RuntimeError, "NestedTensor always requires keepdim=True for now." + ): + torch.nested.nested_tensor( + [torch.tensor([3, 4, 5]), torch.tensor([1, 2])] + ).sum(-1) + + @dtypes(torch.float, torch.float16) + def test_contiguous(self, device, dtype): + # Since we don't have access to the buffer in python this is harder to show what + # we are testing for. When we call chunk on a consistent dim of a NT + # for chunk_size > 1 the resulting tensors are views of the original NT + # whose numels is now less than the size of the buffer. Clone was + # previously creating a new NT with a buffer that was the same size as the + # original. + nt_contiguous = torch.nested.nested_tensor( + [ + torch.randn(2, 20, device=device, dtype=dtype), + torch.randn(4, 20, device=device, dtype=dtype), + ] + ) + # Split up the last dimension which has a consistent size of 20 into 5 chunks + chunks = nt_contiguous.chunk(5, dim=-1) + + # # Check chunks are contiguous after calling contiguous + for chunk in chunks: + self.assertFalse(chunk.is_contiguous()) + self.assertTrue(chunk.contiguous().is_contiguous()) + + @dtypes(torch.float, torch.float16) + @skipMeta + def test_clone(self, device, dtype): + nt1 = random_nt(device, dtype, 4, (4, 4), (1, 1)) + nt2 = nt1.clone() + # Verify the values match + self.assertEqual(nt1, nt2) + # Verify modifying nt2 doesn't affect nt1 + nt2.mul_(nt1) + ub1 = nt1.unbind() + ub2 = nt2.unbind() + for i in range(len(ub1)): + self.assertNotEqual(ub1[i], ub2[i]) + + nt1.clone(memory_format=torch.preserve_format) + msg = "Nested tensor clone supports Preserve and Contiguous memory formats, called clone with memory format: ChannelsLast" + with self.assertRaisesRegex(RuntimeError, msg): + nt1.clone(memory_format=torch.channels_last) + + # cannot test torch.float16 because: RuntimeError: "bernoulli_scalar_cpu_" not implemented for 'Half' + @decorateIf(xfailIfTorchDynamo, lambda params: params["layout"] == torch.jagged) + @dtypes(torch.float, torch.double) + @parametrize("layout", [torch.strided, torch.jagged], name_fn=layout_name) + def test_dropout(self, device, dtype, layout): + # edge case: empty nested tensor + # TODO: support empty NT in jagged layout + if layout == torch.strided: + nt0 = torch.nested.nested_tensor([], layout=layout) + y = torch.nn.functional.dropout(nt0, 0.5) + self.assertEqual(nt0, y) + # normal nested tensor + ntensors = 4 + if layout == torch.jagged: + nt = random_nt(device, dtype, ntensors, (4, 4), (0, 3), layout=layout) + else: + nt = random_nt(device, dtype, ntensors, (4, 4), layout=layout) + # edge case: invalid dropout + self.assertRaises(ValueError, lambda: torch.nn.Dropout(-0.1)) + self.assertRaises(ValueError, lambda: torch.nn.Dropout(1.1)) + self.assertRaises(ValueError, lambda: torch.nn.functional.dropout(nt, -0.1)) + self.assertRaises(ValueError, lambda: torch.nn.functional.dropout(nt, 1.1)) + # edge case: no dropout + dropouter = torch.nn.Dropout(0.0) + y0 = dropouter(nt) + y1 = torch.nn.functional.dropout(nt, 0.0) + self.assertEqual(nt, y0) + self.assertEqual(nt, y1) + # edge case: all dropout + dropouter = torch.nn.Dropout(1.0) + y0 = dropouter(nt) + y1 = torch.nn.functional.dropout(nt, 1.0) + nt0 = torch.zeros_like(nt) + self.assertEqual(nt0, y0) + self.assertEqual(nt0, y1) + # normal case: normal dropout + p = 0.2 + y = torch.nn.functional.dropout(nt, p) + expect = nt.clone() + if layout == torch.jagged: + expect = torch.where(y == 0.0, y, nt) + expect /= 1.0 - p + self.assertEqual(y, expect) + else: + expect = nt.clone() + for i in range(ntensors): + actual_tensor = y[i].view(-1) + expect_tensor = expect[i].view(-1) + for j in range(actual_tensor.shape[0]): + if actual_tensor[j].item() == 0.0: + expect_tensor[j] = 0.0 + else: + expect_tensor[j] /= 1.0 - p + self.assertEqual(y, expect) + with freeze_rng_state(): + dropouter = torch.nn.Dropout(p) + y0 = dropouter(nt) + with freeze_rng_state(): + y1 = torch.nn.functional.dropout(nt, p) + self.assertEqual(y0, y1) + + @dtypes(torch.float, torch.double) + def test_dropout_noncontiguous(self, device, dtype): + ntensors = 4 + nt0 = random_nt(device, dtype, ntensors, (4, 4)) + nt1 = nt0.transpose(-1, -2) + p = 0.3 + with freeze_rng_state(): + dropouter = torch.nn.Dropout(p) + y0 = dropouter(nt0) + with freeze_rng_state(): + y1 = torch.nn.functional.dropout(nt1, p).transpose(-1, -2) + self.assertEqual(y0, y1) + + # cannot test torch.float16 because: RuntimeError: "softmax_kernel_impl" not implemented for 'Half' + @dtypes(torch.float, torch.double) + def test_softmax(self, device, dtype): + # normal nested tensor + ntensors = 4 + nt = random_nt(device, dtype, ntensors, (4, 4)) + # error case: softmax across nested dimension + self.assertRaisesRegex( + RuntimeError, + "Cannot apply softmax across nested dimension 0", + lambda: torch.nn.functional.softmax(nt, 0), + ) + self.assertRaisesRegex( + RuntimeError, + "Cannot apply softmax across nested dimension 0", + lambda: torch.nn.functional.softmax(nt, -3), + ) + # error case: dimension out of range + self.assertRaises(IndexError, lambda: torch.nn.functional.softmax(nt, 3)) + self.assertRaises(IndexError, lambda: torch.nn.functional.softmax(nt, -4)) + # normal case: should equal to padding -inf + softmaxer = torch.nn.Softmax(1) + y0 = softmaxer(nt) + y1 = torch.nn.functional.softmax(nt, 1) + self.assertEqual(y0, y1) + pt = torch.nested.to_padded_tensor(nt, float("-inf")) + # if an entire slice is padded, then softmax will return 0.0 / 0.0 = nan + # however, physically speaking that should be 0.0 + expect = torch.nn.functional.softmax(pt, 1).nan_to_num_(0.0) + self.assertEqual(torch.nested.to_padded_tensor(y0, 0.0), expect) + # edge case: empty nested tensor + nt0 = torch.nested.nested_tensor([]) + y = torch.nn.functional.softmax(nt0, 1) + self.assertEqual(nt0, y) + # edge case: nesting scalars + nt1 = torch.nested.nested_tensor([torch.tensor(0.0), torch.tensor(1.0)]) + self.assertRaises(RuntimeError, lambda: torch.nn.functional.softmax(nt1, 0)) + self.assertRaises(IndexError, lambda: torch.nn.functional.softmax(nt1, 1)) + + @dtypes(torch.float, torch.double) + @torch.inference_mode() + def test_softmax_noncontiguous(self, device, dtype): + nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair( + (2, 3, 6, 7), device, dtype + ) + self.assertEqual( + torch.nn.functional.softmax(nt_contiguous, -1), + torch.nn.functional.softmax(nt_noncontiguous, -1), + ) + + def _test_bmm(self, device, dtype): + # error case: not 3D tensors + nt0 = torch.nested.nested_tensor([], device=device, dtype=dtype) + nt1 = torch.nested.nested_tensor( + [torch.randn(2), torch.randn(3)], device=device, dtype=dtype + ) + nt2 = torch.nested.nested_tensor( + [torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype + ) + self.assertRaisesRegex( + RuntimeError, "batch1 must be a 3D tensor", lambda: nt0.bmm(nt0) + ) + self.assertRaisesRegex( + RuntimeError, "batch1 must be a 3D tensor", lambda: nt0.bmm(nt1) + ) + self.assertRaisesRegex( + RuntimeError, "batch1 must be a 3D tensor", lambda: nt0.bmm(nt2) + ) + self.assertRaisesRegex( + RuntimeError, "batch1 must be a 3D tensor", lambda: nt1.bmm(nt0) + ) + self.assertRaisesRegex( + RuntimeError, "batch1 must be a 3D tensor", lambda: nt1.bmm(nt1) + ) + self.assertRaisesRegex( + RuntimeError, "batch1 must be a 3D tensor", lambda: nt1.bmm(nt2) + ) + self.assertRaisesRegex( + RuntimeError, "batch2 must be a 3D tensor", lambda: nt2.bmm(nt0) + ) + self.assertRaisesRegex( + RuntimeError, "batch2 must be a 3D tensor", lambda: nt2.bmm(nt1) + ) + # error case: incompatible batch size + nt0 = torch.nested.nested_tensor( + [torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype + ) + nt1 = torch.nested.nested_tensor( + [torch.randn((4, 6)), torch.randn((4, 5)), torch.randn((4, 7))], + device=device, + dtype=dtype, + ) + self.assertRaisesRegex( + RuntimeError, + "Expected size for the 1st dimension of batch2 tensor to be: 2 but got: 3.", + lambda: nt0.bmm(nt1), + ) + self.assertRaisesRegex( + RuntimeError, + "Expected size for the 1st dimension of batch2 tensor to be: 3 but got: 2.", + lambda: nt1.bmm(nt0), + ) + # error case: underlying matrices cannot be multiplied + nt0 = torch.nested.nested_tensor( + [torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype + ) + self.assertRaisesRegex( + RuntimeError, + r"0-th nested matrices in batch cannot be multiplied \(2x4 and 2x4\)", + lambda: nt0.bmm(nt0), + ) + # normal nested tensor + nt0 = torch.nested.nested_tensor( + [torch.randn((2, 4)), torch.randn((3, 7))], device=device, dtype=dtype + ) + nt1 = torch.nested.nested_tensor( + [torch.randn((4, 6)), torch.randn((7, 5))], device=device, dtype=dtype + ) + actual = torch.nested.to_padded_tensor(nt0.bmm(nt1), 0.0) + expect = torch.nested.to_padded_tensor(nt0, 0.0).bmm( + torch.nested.to_padded_tensor(nt1, 0.0) + ) + if dtype == torch.float16: + self.assertEqual(actual, expect, rtol=1e-3, atol=1e-3) + else: + self.assertEqual(actual, expect) + + # nested tensor bmm normal tensor + nt0 = torch.nested.nested_tensor( + [torch.randn((2, 7)), torch.randn((3, 7))], device=device, dtype=dtype + ) + nt1 = torch.rand(2, 7, 5, dtype=dtype, device=device) + actual = torch.nested.to_padded_tensor(nt0.bmm(nt1), 0.0) + expect = torch.nested.to_padded_tensor(nt0, 0.0).bmm(nt1) + if dtype == torch.float16: + self.assertEqual(actual, expect, rtol=1e-3, atol=1e-3) + else: + self.assertEqual(actual, expect) + + # nested tensor bmm normal tensor with non-contiguous view + nt1 = torch.rand(2, 5, 7, dtype=dtype, device=device) + nt1 = nt1.transpose(1, 2) + actual = torch.nested.to_padded_tensor(nt0.bmm(nt1), 0.0) + expect = torch.nested.to_padded_tensor(nt0, 0.0).bmm(nt1) + if dtype == torch.float16: + self.assertEqual(actual, expect, rtol=1e-3, atol=1e-3) + else: + self.assertEqual(actual, expect) + + # normal tensor bmm nested tensor + nt0 = torch.rand(2, 5, 7, dtype=dtype, device=device) + nt1 = torch.nested.nested_tensor( + [torch.randn((7, 6)), torch.randn((7, 5))], device=device, dtype=dtype + ) + actual = torch.nested.to_padded_tensor(nt0.bmm(nt1), 0.0) + expect = nt0.bmm(torch.nested.to_padded_tensor(nt1, 0.0)) + if dtype == torch.float16: + self.assertEqual(actual, expect, rtol=1e-3, atol=1e-3) + else: + self.assertEqual(actual, expect) + + # test tensorcore path + nt0 = torch.nested.nested_tensor( + [torch.randn((2, 8)), torch.randn((3, 16))], device=device, dtype=dtype + ) + nt1 = torch.nested.nested_tensor( + [torch.randn((8, 8)), torch.randn((16, 8))], device=device, dtype=dtype + ) + actual = torch.nested.to_padded_tensor(nt0.bmm(nt1), 0.0) + expect = torch.nested.to_padded_tensor(nt0, 0.0).bmm( + torch.nested.to_padded_tensor(nt1, 0.0) + ) + if dtype == torch.float16: + self.assertEqual(actual, expect, rtol=1e-3, atol=1e-3) + else: + self.assertEqual(actual, expect) + + @onlyOn(["cuda", "xpu"]) + @dtypes(torch.float, torch.double, torch.float16, torch.bfloat16) + @tf32_on_and_off(0.005) + def test_bmm_cuda(self, device, dtype): + self._test_bmm(device, dtype) + + @onlyCPU + # cannot test torch.float16 because: RuntimeError: "addmm_impl_cpu_" not implemented for 'Half' + @dtypes(torch.float, torch.double) + def test_bmm_cpu(self, device, dtype): + self._test_bmm(device, dtype) + + # cannot test torch.float16 because: RuntimeError: "addmm_impl_cpu_" not implemented for 'Half' + @dtypes(torch.float, torch.double) + def test_bmm_noncontiguous(self, device, dtype): + nt0_contiguous, nt0_noncontiguous = random_nt_noncontiguous_pair( + (2, 3), device, dtype + ) + nt1_contiguous, nt1_noncontiguous = random_nt_noncontiguous_pair( + (6, 7), device, dtype + ) + self.assertEqual( + nt0_contiguous.transpose(-1, -2).bmm(nt1_contiguous), + nt0_noncontiguous.transpose(-1, -2).bmm(nt1_noncontiguous), + ) + + @dtypes(torch.float, torch.double) + @tf32_on_and_off(0.005) + def test_matmul_with_bmm_path(self, device, dtype): + def unbind_rebind_matmul(nt1, nt2): + t1s = nt1.unbind() + t2s = nt2.unbind() + out_ts = [t1.matmul(t2) for t1, t2 in zip(t1s, t2s)] + return torch.nested.nested_tensor(out_ts) + + # [N, n_head, *, head_dim], [N, n_head, head_dim, *] + Ns = [1, 2, 5] + n_heads = np.random.randint(2, 5) + head_dim = 3 + t1s = [] + t2s = [] + for N in Ns: + for _ in range(N): + seq_len1 = np.random.randint(2, 5) + seq_len2 = np.random.randint(2, 5) + t1s.append(torch.randn(n_heads, seq_len1, head_dim)) + t2s.append(torch.randn(n_heads, head_dim, seq_len2)) + nt1 = torch.nested.nested_tensor(t1s, device=device, dtype=dtype) + nt2 = torch.nested.nested_tensor(t2s, device=device, dtype=dtype) + self.assertEqual(torch.matmul(nt1, nt2), unbind_rebind_matmul(nt1, nt2)) + + # test with noncontiguous + t3s = [] + t4s = [] + for _ in range(N): + seq_len = np.random.randint(2, 5) + t3s.append(torch.randn(seq_len, n_heads, head_dim)) + t4s.append(torch.randn(seq_len, n_heads, head_dim)) + nt3 = torch.nested.nested_tensor(t3s, device=device, dtype=dtype).transpose( + 1, 2 + ) + nt4 = ( + torch.nested.nested_tensor(t4s, device=device, dtype=dtype) + .transpose(1, 2) + .transpose(2, 3) + ) + self.assertEqual(torch.matmul(nt3, nt4), unbind_rebind_matmul(nt3, nt4)) + + # cannot test torch.float16 because: RuntimeError: "bmm" not implemented for 'Half' + @dtypes(torch.float, torch.double) + def test_matmul(self, device, dtype): + # error case: one is nested but the other is not + nt = torch.nested.nested_tensor( + [torch.randn(2), torch.randn(3)], device=device, dtype=dtype + ) + t = torch.randn(4, device=device, dtype=dtype) + self.assertRaisesRegex( + RuntimeError, + "Expected both to be nested, but got a nested self and non-nested other", + lambda: torch.matmul(nt, t), + ) + self.assertRaisesRegex( + RuntimeError, + "Expected both to be nested, but got a non-nested self and nested other", + lambda: torch.matmul(t, nt), + ) + # error case: not 3+D tensors + nt0 = torch.nested.nested_tensor([], device=device, dtype=dtype) + nt1 = torch.nested.nested_tensor( + [torch.randn(2), torch.randn(3)], device=device, dtype=dtype + ) + nt2 = torch.nested.nested_tensor( + [torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype + ) + self.assertRaisesRegex( + RuntimeError, + r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+", + lambda: torch.matmul(nt0, nt0), + ) + self.assertRaisesRegex( + RuntimeError, + r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+", + lambda: torch.matmul(nt0, nt1), + ) + self.assertRaisesRegex( + RuntimeError, + r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+", + lambda: torch.matmul(nt0, nt2), + ) + self.assertRaisesRegex( + RuntimeError, + r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+", + lambda: torch.matmul(nt1, nt0), + ) + self.assertRaisesRegex( + RuntimeError, + r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+", + lambda: torch.matmul(nt1, nt1), + ) + self.assertRaisesRegex( + RuntimeError, + r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+", + lambda: torch.matmul(nt1, nt2), + ) + self.assertRaisesRegex( + RuntimeError, + r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 2nd input has rank: [0-9]+", + lambda: torch.matmul(nt2, nt0), + ) + self.assertRaisesRegex( + RuntimeError, + r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 2nd input has rank: [0-9]+", + lambda: torch.matmul(nt2, nt1), + ) + # error case: incompatible batch size + nt0 = torch.nested.nested_tensor( + [torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype + ) + nt1 = torch.nested.nested_tensor( + [torch.randn((4, 6)), torch.randn((4, 5)), torch.randn((4, 7))], + device=device, + dtype=dtype, + ) + self.assertRaisesRegex( + RuntimeError, + r"matmul: Expected size for the 1st dimension of 2nd input tensor to be: [0-9]+ but got: [0-9]+.", + lambda: torch.matmul(nt0, nt1), + ) + self.assertRaisesRegex( + RuntimeError, + r"matmul: Expected size for the 1st dimension of 2nd input tensor to be: [0-9]+ but got: [0-9]+.", + lambda: torch.matmul(nt1, nt0), + ) + # error case: incompatible (wrong) batch sizes that shouldn't even broadcast? + nt0 = torch.nested.nested_tensor( + [torch.randn((2, 2, 4)), torch.randn((2, 3, 4))], device=device, dtype=dtype + ) + nt1 = torch.nested.nested_tensor( + [torch.randn((3, 4, 6)), torch.randn((3, 4, 5))], device=device, dtype=dtype + ) + self.assertRaisesRegex( + RuntimeError, + "matmul(): For nested tensors, batch dimensions must have the same sizes,", + lambda: torch.matmul(nt0, nt1), + ) + # error case: incompatible batch sizes that should technically broadcast + nt0 = torch.nested.nested_tensor( + [torch.randn((2, 2, 4)), torch.randn((1, 3, 4))], device=device, dtype=dtype + ) + nt1 = torch.nested.nested_tensor( + [torch.randn((1, 4, 6)), torch.randn((3, 4, 5))], device=device, dtype=dtype + ) + self.assertRaisesRegex( + RuntimeError, + "matmul(): For nested tensors, batch dimensions must have the same sizes,", + lambda: torch.matmul(nt0, nt1), + ) + # error case: underlying matrices cannot be multiplied + nt0 = torch.nested.nested_tensor( + [torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype + ) + self.assertRaisesRegex( + RuntimeError, + "matmul(): Nested tensors cannot be matrix multiplied", + lambda: torch.matmul(nt0, nt0), + ) + # normal nested tensor: 3D + nt0 = torch.nested.nested_tensor( + [torch.randn((2, 4)), torch.randn((3, 7))], device=device, dtype=dtype + ) + nt1 = torch.nested.nested_tensor( + [torch.randn((4, 6)), torch.randn((7, 5))], device=device, dtype=dtype + ) + actual = torch.nested.to_padded_tensor(torch.matmul(nt0, nt1), 0.0) + expect = torch.matmul( + torch.nested.to_padded_tensor(nt0, 0.0), + torch.nested.to_padded_tensor(nt1, 0.0), + ) + self.assertEqual(actual, expect) + # normal nested tensor: 4D (with testing for batch_size=1) + nt0 = torch.nested.nested_tensor( + [torch.randn((1, 2, 4)), torch.randn((8, 3, 7))], device=device, dtype=dtype + ) + nt1 = torch.nested.nested_tensor( + [torch.randn((1, 4, 6)), torch.randn((8, 7, 5))], device=device, dtype=dtype + ) + actual = torch.nested.to_padded_tensor(torch.matmul(nt0, nt1), 0.0) + expect = torch.matmul( + torch.nested.to_padded_tensor(nt0, 0.0), + torch.nested.to_padded_tensor(nt1, 0.0), + ) + self.assertEqual(actual, expect) + # normal nested tensor: 5D + nt0 = torch.nested.nested_tensor( + [torch.randn((8, 9, 2, 4)), torch.randn((8, 9, 3, 7))], + device=device, + dtype=dtype, + ) + nt1 = torch.nested.nested_tensor( + [torch.randn((8, 9, 4, 6)), torch.randn((8, 9, 7, 5))], + device=device, + dtype=dtype, + ) + actual = torch.nested.to_padded_tensor(torch.matmul(nt0, nt1), 0.0) + expect = torch.matmul( + torch.nested.to_padded_tensor(nt0, 0.0), + torch.nested.to_padded_tensor(nt1, 0.0), + ) + self.assertEqual(actual, expect) + + # only supported on CUDA for now + @dtypes(torch.float, torch.double) + def test_matmul_nt_with_broadcasted_t(self, device, dtype): + # NT (B, *, C, D) with T (D, E) broadcasting case + nt = random_nt_from_dims([3, None, 4, 5], device=device, dtype=dtype) + t = torch.randn(5, 6, device=device, dtype=dtype) + output = torch.matmul(nt, t) + + # should be equivalent to matmul-ing each component with the dense tensor + self.assertEqual(nt.size(0), output.size(0)) + for component, out_component in zip(nt, output): + self.assertEqual(out_component, torch.matmul(component, t)) + + # cannot test torch.float16 because: RuntimeError: "bmm" not implemented for 'Half' + @dtypes(torch.float, torch.double) + def test_matmul_noncontiguous(self, device, dtype): + nt0_contiguous, nt0_noncontiguous = random_nt_noncontiguous_pair( + (2, 3), device, dtype + ) + nt1_contiguous, nt1_noncontiguous = random_nt_noncontiguous_pair( + (6, 7), device, dtype + ) + self.assertEqual( + torch.matmul(nt0_contiguous.transpose(-1, -2), nt1_contiguous), + torch.matmul(nt0_noncontiguous.transpose(-1, -2), nt1_noncontiguous), + ) + + @dtypes(torch.float, torch.double) + def test_linear(self, device, dtype): + a = torch.randn(1, 2, device=device, dtype=dtype) + b = torch.randn(2, 2, device=device, dtype=dtype) + c = torch.randn(3, 2, device=device, dtype=dtype) + nt = torch.nested.nested_tensor([a, b, c]) + + weight = torch.randn(2, 2, device=device, dtype=dtype) + bias = torch.randn(2, device=device, dtype=dtype) + # success case + torch.functional.F.linear(nt, weight, bias) + + # invalid nested tensor dimension + msg = r"Linear requires nested_tensor.dim == 3 and dense_matrix.dim == 2. Nested tensor dim: 2. Dense tensor dim: 2" + nt1 = torch.nested.nested_tensor( + [ + torch.randn(1, device=device, dtype=dtype), + torch.randn(2, device=device, dtype=dtype), + ] + ) + with self.assertRaisesRegex(RuntimeError, msg): + torch.functional.F.linear(nt1, weight, bias) + + # invalid weight shape + msg = r"Linear requires nested_tensor.dim == 3 and dense_matrix.dim == 2. Nested tensor dim: 3. Dense tensor dim: 3" + weight1 = torch.randn(2, 2, 3, device=device, dtype=dtype) + with self.assertRaisesRegex(RuntimeError, msg): + torch.functional.F.linear(nt, weight1, bias) + + # inconsistent last dim of nested tensor + msg = r"Expected all tensors in nested tensor to have the same trailing dimension, instead last dimension equals:" + nt2 = torch.nested.nested_tensor( + [ + torch.randn(1, 2, device=device, dtype=dtype), + torch.randn(2, 3, device=device, dtype=dtype), + ] + ) + with self.assertRaisesRegex(RuntimeError, msg): + torch.functional.F.linear(nt2, weight, bias) + + # Mismatch of nested tensor last dim and weight dimension + weight2 = torch.randn(2, 4, device=device, dtype=dtype) + msg = ( + r"Shape mismatch for NestedTensor Linear: Expected input's \(a nested tensor\) 'last_dim'" + r" to equal 'weight.size\(1\), but got: last_dim = 2, and weight.size\(1\) = 4" + ) + with self.assertRaisesRegex(RuntimeError, msg): + torch.functional.F.linear(nt, weight2, bias) + + # Nested tensor input and nested weight + nt_weight = nt.clone() + msg = r"Linear does not support nested weight when input is a nested tensor." + with self.assertRaisesRegex(RuntimeError, msg): + torch.functional.F.linear(nt, nt_weight, bias) + + # TODO: test noncontiguous linear + # For now this tests the error message of linear + # since linear does not support noncontiguous buffer yet + @dtypes(torch.float, torch.double) + def test_linear_noncontiguous(self, device, dtype): + nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair( + (2, 3, 6, 7), device, dtype + ) + weight = torch.randn((8, 5), device=device, dtype=dtype) + self.assertRaisesRegex( + RuntimeError, + r"for now linear only supports contiguous nested tensor", + lambda: torch.nn.functional.linear(nt_noncontiguous, weight), + ) + + @dtypes(torch.float, torch.float16, torch.double) + def test_to_padded_tensor_zero_numel_errors(self, device, dtype): + ts = [torch.ones(1, 0), torch.ones(0, 0)] + nt = torch.nested.nested_tensor( + ts, device=device, dtype=dtype, layout=torch.strided + ) + self.assertRaisesRegex( + RuntimeError, + r"at least one constituent tensor should have non-zero numel", + lambda: torch.nested.to_padded_tensor(nt, 0.0), + ) + + @dtypes(torch.float, torch.float16, torch.double) + def test_transpose(self, device, dtype): + nt = random_nt(device, dtype, 4, (4, 4)) + # error case: transpose nested dimension + self.assertRaisesRegex( + RuntimeError, + "Nested tensor dimension 0 cannot be transposed", + lambda: nt.transpose(0, 1), + ) + self.assertRaisesRegex( + RuntimeError, + "Nested tensor dimension 0 cannot be transposed", + lambda: nt.transpose(1, -3), + ) + # error case: dimension out of range + self.assertRaises(IndexError, lambda: nt.transpose(1, 3)) + self.assertRaises(IndexError, lambda: nt.transpose(-4, -1)) + # normal case + ntT = nt.transpose(-1, -2) + ptT_from_ntT = noncontiguous_to_padded_tensor(ntT) + pt = torch.nested.to_padded_tensor(nt, 0.0) + ptT = pt.transpose(-1, -2) + self.assertEqual(ptT, ptT_from_ntT) + + @dtypes(torch.float, torch.float16, torch.double) + def test_squeeze_unsqueeze(self, device, dtype): + a = torch.arange(6).reshape(2, 3) + b = torch.arange(15).reshape(5, 3) + nt = torch.nested.nested_tensor([a, b], device=device, dtype=dtype) + # error case: squeeze no dimension + self.assertRaisesRegex( + RuntimeError, + "For nested tensors, squeeze without the dim argument", + lambda: nt.squeeze(), + ) + # error case: squeeze nested dimension + self.assertRaisesRegex( + RuntimeError, + "For nested tensors, squeezing dimension 0", + lambda: nt.squeeze(0), + ) + # error case: dimension out of range + self.assertRaises(IndexError, lambda: nt.squeeze(3)) + # error case: squeeze nested tensor of singleton tensors + c = torch.ones(1) + nt_singleton = torch.nested.nested_tensor([c, c], device=device, dtype=dtype) + self.assertRaisesRegex( + RuntimeError, + "For nested tensors, squeezing a nested tensor of singleton", + lambda: nt_singleton.squeeze(1), + ) + + # squeezing a dim which does not have size 1 should be a no-op + nt2 = nt.squeeze(-1) + self.assertEqual(nt, nt2) + + # test cases that should work + nt_sizes = nt._nested_tensor_size() + nt_strides = nt._nested_tensor_strides() + for i in range(-2, 4): + if i == 0: + # cannot unsqueeze batch dim + continue + nt_unsqueezed = nt.unsqueeze(i) + # negative dim will correspond to unsqueeze() applied at dim = dim + nt.dim() + 1 + wrapped_i = i + nt.dim() + 1 if i < 0 else i + # col_index into nt size tensor is requires subtraction of 1 to ignore batch dim + size_idx = wrapped_i - 1 + self.assertEqual( + nt_unsqueezed._nested_tensor_size()[:, size_idx], + torch.ones(2, dtype=torch.long), + ) + unsqueezed_stride = nt_unsqueezed._nested_tensor_strides()[:, size_idx] + if i == nt.ndim or i == -1: + self.assertEqual(unsqueezed_stride, torch.ones(2, dtype=torch.long)) + else: + stride_col_after = nt_strides[:, size_idx] + size_col_after = nt_sizes[:, size_idx] + self.assertEqual(unsqueezed_stride, stride_col_after * size_col_after) + nt_squeezed = nt_unsqueezed.squeeze(i) + self.assertEqual(nt_squeezed, nt) + self.assertEqual(nt_squeezed._nested_tensor_size(), nt_sizes) + self.assertEqual(nt_squeezed._nested_tensor_strides(), nt_strides) + + @dtypes(torch.float, torch.float16, torch.double) + def test_transpose_inference_mode_interaction(self, device, dtype): + nt = random_nt(device, dtype, 4, (4, 4)) + # Construct in default mode and transpose while in inference mode + with torch.inference_mode(): + ntT = nt.transpose(-1, -2) + ptT_from_ntT = noncontiguous_to_padded_tensor(ntT) + pt = torch.nested.to_padded_tensor(nt, 0.0) + ptT = pt.transpose(-1, -2) + self.assertEqual(ptT, ptT_from_ntT) + + # Construct and transpose while in inference mode + with torch.inference_mode(): + nt = random_nt(device, dtype, 4, (4, 4)) + ntT = nt.transpose(-1, -2) + ptT_from_ntT = noncontiguous_to_padded_tensor(ntT) + pt = torch.nested.to_padded_tensor(nt, 0.0) + ptT = pt.transpose(-1, -2) + self.assertEqual(ptT, ptT_from_ntT) + + @dtypes(torch.float, torch.float16, torch.double) + def test_view(self, device, dtype): + nt = random_nt(device, dtype, 4, (4, 4)) + # error case: empty shape + self.assertRaisesRegex( + RuntimeError, + r"shape '\[\]' is invalid for a nested tensor", + lambda: nt.view(()), + ) + # error case: empty nested tensor + nt_empty = torch.nested.nested_tensor([]) + self.assertRaisesRegex( + RuntimeError, + "empty nested tensor cannot be reshaped", + lambda: nt_empty.view(-1), + ) + # error case: -1 for batch size + self.assertRaisesRegex( + RuntimeError, + r"view: For now nested view cannot change or infer the implicit batch dimension", + lambda: nt.view(-1, 2, 3), + ) + self.assertRaisesRegex( + RuntimeError, + r"shape '\[.*\]' is invalid for input of size [0-9]+", + lambda: nt.view(4, 2, 3), + ) + # normal case + x0 = torch.randn((2, 20), device=device, dtype=dtype) + x1 = torch.randn((3, 20), device=device, dtype=dtype) + nt = torch.nested.nested_tensor([x0, x1]) + pt = torch.nested.to_padded_tensor(nt, 0.0) + # error case, trying to reshape batch dim to a legit shape + self.assertRaisesRegex( + RuntimeError, + r"For now nested view cannot change or infer the implicit batch dimension", + lambda: nt.transpose(-1, -2).view(40, -1), + ) + # inherit only the ragged dimension + # (2, 20) -> (2, 5, 4) + # (3, 20) -> (3, 5, 4) + nt1 = nt.view(2, -1, 5, 4) + # (2, 3, 20) -> (2, 3, 5, 4) -> (2, 4, 5, 4) + pt1 = pt.view(2, -1, 5, 4) + self.assertEqual(noncontiguous_to_padded_tensor(nt1), pt1) + + # more than one -1 (even for "old" dims), should fail + # this attempts to do # (2, (2, 3), 5, 4) -> (2, (2, 3), 5, 2, 2) + # but we ban "inherit old behavior" for >1 dimension + self.assertRaisesRegex( + RuntimeError, + r"only one dimension can be inferred", + lambda: nt1.view(2, -1, -1, 2, 2), + ) + + @dtypes(torch.float, torch.float16, torch.double) + def test_view_inference_mode_interaction(self, device, dtype): + # Construct in default mode and view while in inference mode + nt = torch.nested.nested_tensor( + [torch.randn((2, 20)), torch.randn((3, 20))], device=device, dtype=dtype + ) + with torch.inference_mode(): + ntT = nt.view(2, -1, 4, 5) + ptT_from_ntT = noncontiguous_to_padded_tensor(ntT) + pt = torch.nested.to_padded_tensor(nt, 0.0) + ptT = pt.view(2, -1, 4, 5) + self.assertEqual(ptT, ptT_from_ntT) + # Construct and view while in inference mode + with torch.inference_mode(): + nt = torch.nested.nested_tensor( + [torch.randn((2, 20)), torch.randn((3, 20))], device=device, dtype=dtype + ) + ntT = nt.view(2, -1, 4, 5) + ptT_from_ntT = noncontiguous_to_padded_tensor(ntT) + pt = torch.nested.to_padded_tensor(nt, 0.0) + ptT = pt.view(2, -1, 4, 5) + self.assertEqual(ptT, ptT_from_ntT) + + @dtypes(torch.float, torch.float16, torch.double) + def test_reshape(self, device, dtype): + nt = random_nt(device, dtype, 4, (4, 4)) + # error case: empty shape + self.assertRaisesRegex( + RuntimeError, + r"shape '\[\]' is invalid for a nested tensor", + lambda: nt.reshape(()), + ) + # error case: empty nested tensor + nt_empty = torch.nested.nested_tensor([]) + self.assertRaisesRegex( + RuntimeError, + "empty nested tensor cannot be reshaped", + lambda: nt_empty.reshape(-1), + ) + # error case: -1 for batch size + self.assertRaisesRegex( + RuntimeError, + r"reshape: For now nested reshape cannot change or infer the implicit batch dimension", + lambda: nt.reshape(-1, 2, 3), + ) + self.assertRaisesRegex( + RuntimeError, + r"shape '\[.*\]' is invalid for input of size [0-9]+", + lambda: nt.reshape(4, 2, 3), + ) + # normal case + x0 = torch.randn((2, 20), device=device, dtype=dtype) + x1 = torch.randn((3, 20), device=device, dtype=dtype) + nt = torch.nested.nested_tensor([x0, x1]) # (2, (2, 3), 20) + pt = torch.nested.to_padded_tensor(nt, 0.0) + # error case, trying to reshape batch dim to a legit shape + self.assertRaisesRegex( + RuntimeError, + r"reshape: For now nested reshape cannot change or infer the implicit batch dimension", + lambda: nt.transpose(-1, -2).reshape(40, -1), + ) + # inherit only the ragged dimension + # (2, 20) -> (2, 5, 4) + # (3, 20) -> (3, 5, 4) + nt1 = nt.reshape(2, -1, 5, 4) + # (2, 3, 20) -> (2, 3, 5, 4) -> (2, 4, 5, 4) + pt1 = pt.reshape(2, -1, 5, 4) + self.assertEqual(noncontiguous_to_padded_tensor(nt1), pt1) + + # more than one -1 (even for "old" dims), should fail + # this attempts to do # (2, (2, 3), 5, 4) -> (2, (2, 3), 5, 2, 2) + # but we ban "inherit old behavior" for >1 dimension + self.assertRaisesRegex( + RuntimeError, + r"only one dimension can be inferred", + lambda: nt1.reshape(2, -1, -1, 2, 2), + ) + + def test_nested_masked_select(self, device): + t = torch.randn([3, 3], device=device) + mask = torch.tensor([False], device=device) + + njt = torch.nested.masked_select(t, mask) + self.assertEqual(njt.values(), torch.tensor([], device=device)) + self.assertEqual(njt.offsets(), torch.tensor([0, 0, 0, 0], device=device)) + + mask = torch.tensor([[False], [False], [True]], device=device) + njt = torch.nested.masked_select(t, mask) + self.assertEqual(njt.values(), t[-1], atol=0.1, rtol=0.1) + self.assertEqual(njt.offsets(), torch.tensor([0, 0, 0, 3], device=device)) + + mask = torch.tensor( + [[False, False, True], [True, False, True], [False, False, True]], + device=device, + ) + njt = torch.nested.masked_select(t, mask) + self.assertEqual(njt.values(), t.masked_select(mask)) + self.assertEqual(njt.offsets(), torch.tensor([0, 1, 3, 4], device=device)) + + t = torch.randn([2, 3, 3, 1], device=device) + mask = torch.tensor( + [ + [ + [[True], [False], [True]], + [[True], [False], [True]], + [[True], [False], [True]], + ], + [ + [[False], [True], [True]], + [[False], [True], [True]], + [[True], [True], [True]], + ], + ], + device=device, + ) + njt = torch.nested.masked_select(t, mask) + self.assertEqual(njt.values(), t.masked_select(mask)) + self.assertEqual( + njt.offsets(), + torch.tensor( + [0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13], + device=device, + ), + ) + + @dtypes(torch.float, torch.float16, torch.double) + def test_narrow(self, device, dtype): + nt = random_nt_from_dims([5, None, None, None], device=device, dtype=dtype) + + # narrow on dim=0 from start to end + bounds = [(0, 5), (0, 3), (1, 2), (1, 5), (2, 4)] + for start, end in bounds: + length = end - start + narrowed = nt.narrow(dim=0, start=start, length=length) + # ensure output is a view + self.assertTrue(narrowed._base is nt) + for nc, c in zip(narrowed.unbind(), nt.unbind()[start:end]): + self.assertEqual(nc, c) + + # dim != 0 is not supported + for dim in range(1, nt.dim()): + with self.assertRaisesRegex( + RuntimeError, "only dim=0 supported for nested tensors" + ): + nt.narrow(dim=dim, start=0, length=1) + + # error case: non-contiguous NT + _, nt_noncont = random_nt_noncontiguous_pair((2, 3, 4)) + with self.assertRaisesRegex( + RuntimeError, "only contiguous nested tensors supported" + ): + nt_noncont.narrow(dim=0, start=0, length=1) + + @parametrize("input_dim", [3, 4]) + @tf32_on_and_off(0.005) + def test_scaled_dot_product_attention(self, device, input_dim): + def rand_tensor(*shape): + return torch.randn(shape, device=device) + + E = 8 + if input_dim == 3: + # Shape: (N, L, E); ragged L + query = torch.nested.nested_tensor( + [rand_tensor(2, E), rand_tensor(3, E), rand_tensor(4, E)] + ) + + # Shape: (N, S, E); ragged S + key = torch.nested.nested_tensor( + [rand_tensor(3, E), rand_tensor(4, E), rand_tensor(5, E)] + ) + value = torch.nested.nested_tensor( + [rand_tensor(3, E), rand_tensor(4, E), rand_tensor(5, E)] + ) + elif input_dim == 4: + # In the 4D case the L and S is ragged + # Shape: (N, N', L, E); ragged N' and L + query = torch.nested.nested_tensor( + [rand_tensor(2, 2, E), rand_tensor(3, 3, E), rand_tensor(4, 4, E)] + ) + # Shape: (N, N', S, E); ragged N' and S + key = torch.nested.nested_tensor( + [rand_tensor(2, 3, E), rand_tensor(3, 4, E), rand_tensor(4, 5, E)] + ) + value = torch.nested.nested_tensor( + [rand_tensor(2, 3, E), rand_tensor(3, 4, E), rand_tensor(4, 5, E)] + ) + else: + self.fail(f"Invalid input_dim {input_dim} encountered in SDP test") + + def rand_mask(size): + return torch.randint(0, 2, size=size, dtype=torch.bool, device=device) + + # Shape: (N, L, S); ragged L and S matching above + attn_mask = torch.nested.nested_tensor( + [rand_mask((2, 3)), rand_mask((3, 4)), rand_mask((4, 5))] + ) + + dropout_p = 0.0 # no dropout for reproducibility + + # Success case: no attn_mask set and is_causal=False. + actual = torch.nn.functional.scaled_dot_product_attention( + query, key, value, attn_mask=None, is_causal=False, dropout_p=dropout_p + ) + + expected_outputs = [] + for q, k, v in zip(query.unbind(), key.unbind(), value.unbind()): + output = torch.nn.functional.scaled_dot_product_attention( + q.unsqueeze(0), + k.unsqueeze(0), + v.unsqueeze(0), + attn_mask=None, + dropout_p=dropout_p, + ) + expected_outputs.append(output.squeeze(0)) + expected_output_nested = torch.nested.nested_tensor(expected_outputs) + self.assertEqual(actual, expected_output_nested) + + # Error case: explicit attn_mask set. + with self.assertRaisesRegex( + RuntimeError, "not supported when an explicit attn_mask is set" + ): + torch.nn.functional.scaled_dot_product_attention( + query, key, value, attn_mask=attn_mask, dropout_p=dropout_p + ) + + # Error case: is_causal=True. + with self.assertRaisesRegex(RuntimeError, "not supported when is_causal=True"): + torch.nn.functional.scaled_dot_product_attention( + query, key, value, dropout_p=dropout_p, is_causal=True + ) + + @dtypes(torch.float, torch.float16, torch.double) + def test_empty_like(self, device, dtype): + ntensors = 4 + nt = random_nt(device, dtype, ntensors, (4, 4)) + + # Create empty on same device as original nested tensor + nt_empty = torch.empty_like(nt) + assert nt.is_same_size(nt_empty) + self.assertEqual(nt.dtype, nt_empty.dtype) + self.assertEqual(nt.device, nt_empty.device) + self.assertEqual(nt.layout, nt_empty.layout) + + if torch.cuda.is_available(): + if device == "cpu": + nt_cuda = torch.empty_like(nt, device="cuda") + self.assertEqual(torch.device("cuda").type, nt_cuda.device.type) + else: + nt_cpu = torch.empty_like(nt, device="cpu") + self.assertEqual(torch.device("cpu").type, nt_cpu.device.type) + + # Check changing dtype of empty_like nested tensor output + dtype_set = {torch.float, torch.float16, torch.double} + for other_dtype in dtype_set - {dtype}: + nt_empty_other_dtype = torch.empty_like(nt, dtype=other_dtype) + self.assertEqual(nt.dtype, dtype) + self.assertEqual(nt_empty_other_dtype.dtype, other_dtype) + self.assertEqual(nt.device, nt_empty.device) + self.assertEqual(nt.layout, nt_empty.layout) + + # Create tensor for autograd + nt_empty_req_grad = torch.empty_like(nt, requires_grad=True) + self.assertEqual(nt_empty_req_grad.requires_grad, True) + + # Test noncontiguous tensor does not fail to copy + nt_cont, nt_noncont = random_nt_noncontiguous_pair((2, 3, 6, 7)) + nt_empty = torch.empty_like(nt_cont) + assert nt_cont.is_same_size(nt_empty) + nt_empty_non_contig = torch.empty_like(nt_noncont) + assert nt_noncont.is_same_size(nt_empty_non_contig) + + # Test the contiguous memory format option + nt_empty_contig = torch.empty_like( + nt_cont, memory_format=torch.contiguous_format + ) + assert nt_cont.is_same_size(nt_empty_contig) + assert nt_empty_contig.is_contiguous() + + nt_empty_non_contig = torch.empty_like( + nt_noncont, memory_format=torch.contiguous_format + ) + assert nt_noncont.is_same_size(nt_empty_non_contig) + assert nt_empty_non_contig.is_contiguous() + + # Test other memory formats fail + self.assertRaises( + RuntimeError, + lambda: torch.empty_like(nt_cont, memory_format=torch.channels_last), + ) + self.assertRaises( + RuntimeError, + lambda: torch.empty_like(nt_noncont, memory_format=torch.channels_last), + ) + self.assertRaises( + RuntimeError, + lambda: torch.empty_like(nt_cont, memory_format=torch.channels_last_3d), + ) + self.assertRaises( + RuntimeError, + lambda: torch.empty_like(nt_noncont, memory_format=torch.channels_last_3d), + ) + + +@markDynamoStrictTest +class TestNestedTensorAutograd(NestedTensorTestCase): + # Note [Gradcheck args check_batched_grad=False] the common_utils testing version of gradcheck + # includes the default parameters used for testing ops with gradcheck. However nested tensor + # does not support the stack op therefore we turn it off for these tests + def _create_leaf_nested_tensor_from_list(self, tensor_device, requires_grad=False): + return torch.nested.nested_tensor( + [torch.randn(1, 2), torch.randn(7, 8)], + requires_grad=requires_grad, + device=tensor_device, + ) + + def _create_nested_tensor_from_list(self, tensor_device, requires_grad=False): + return torch.nested.as_nested_tensor( + [ + torch.randn(1, 2, requires_grad=requires_grad), + torch.randn(7, 8, requires_grad=requires_grad), + ], + device=tensor_device, + ) + + def _create_nested_tensor_from_mask(self, tensor_device, requires_grad=False): + data = torch.randn(2, 3, 4, requires_grad=requires_grad, device=tensor_device) + mask = torch.ones_like(data[:, :, 0]).bool() + return torch._nested_tensor_from_mask(data, mask) + + def test_as_nested_tensor_propagates_gradients(self, device): + a = torch.arange(3, dtype=torch.float, device=device) + b = torch.arange(5, dtype=torch.float, device=device) + nt = torch.nested.as_nested_tensor([a, b]) + # tensors with requires_grad=False are leaves + self.assertTrue(nt.is_leaf) + self.assertTrue(not nt.requires_grad) + + a = torch.arange(3, dtype=torch.float, requires_grad=True, device=device) + b = torch.arange(5, dtype=torch.float, requires_grad=True, device=device) + nt2 = torch.nested.as_nested_tensor([a, b]) + fake_grad = torch.nested.nested_tensor( + [torch.ones_like(a), torch.zeros_like(b)], device=device + ) + nt2.backward(fake_grad) + self.assertEqual(a.grad, fake_grad[0]) + self.assertEqual(b.grad, fake_grad[1]) + + def test_nested_tensor_generates_leaf(self, device): + a = torch.arange(3, dtype=torch.float, requires_grad=True, device=device) + b = torch.arange(5, dtype=torch.float, requires_grad=True, device=device) + + nt = torch.nested.nested_tensor([a, b], requires_grad=False) + self.assertTrue(nt.is_leaf) + self.assertTrue(not nt.requires_grad) + + nt2 = torch.nested.nested_tensor([a, b], requires_grad=True) + self.assertTrue(nt2.is_leaf) + self.assertTrue(nt2.requires_grad) + + fake_grad = torch.nested.nested_tensor( + [torch.ones_like(a), torch.zeros_like(b)], device=device + ) + nt2.backward(fake_grad) + self.assertEqual(nt2.grad, fake_grad) + self.assertEqual(a.grad, None) + self.assertEqual(b.grad, None) + + def test_set_requires_grad_from_list(self, device): + nt = self._create_nested_tensor_from_list(device) + nt.requires_grad_() + assert nt.requires_grad + + def test_set_requires_grad_from_mask(self, device): + nt = self._create_nested_tensor_from_mask(device) + nt.requires_grad_() + assert nt.requires_grad + + def test_backward_for_add_op(self, device): + nt_1 = self._create_nested_tensor_from_mask(device) + nt_2 = self._create_nested_tensor_from_mask(device) + + nt_1.requires_grad_() + c = nt_1 + nt_2 + + assert nt_1.requires_grad + assert c.requires_grad + grad_output = self._create_nested_tensor_from_mask(device) + c.backward(grad_output) + + # Grad check doesn't work with nested yet. + # d/dnt_1 (nt + nt_1) = 1*grad_output + self.assertEqual(nt_1.grad, grad_output) + + def test_backward_for_sub_op(self, device): + nt_1 = self._create_nested_tensor_from_mask(device) + nt_2 = self._create_nested_tensor_from_mask(device) + + nt_1.requires_grad_() + nt_2.requires_grad_() + c = nt_1 - nt_2 + + assert nt_1.requires_grad + assert nt_2.requires_grad + assert c.requires_grad + grad_output = self._create_nested_tensor_from_mask(device) + c.backward(grad_output) + + self.assertEqual(nt_1.grad, grad_output) + self.assertEqual(nt_2.grad, -1 * grad_output) + + def test_backward_sub_strided(self, device): + a = torch.nested.nested_tensor( + [torch.randn(9, 2, 4), torch.randn(12, 2, 4)], + requires_grad=True, + device=device, + ) + b = torch.nested.nested_tensor( + [torch.randn(9, 4, 2), torch.randn(12, 4, 2)], + requires_grad=True, + device=device, + ) + c = a - b.transpose(-1, -2) + grad_output = c.clone() + c.backward(grad_output) + self.assertEqual(a.grad, grad_output) + self.assertEqual(b.grad, -1 * grad_output.transpose(-1, -2)) + + def test_backward_add_strided(self, device): + a = torch.nested.nested_tensor( + [torch.randn(9, 2, 4), torch.randn(12, 2, 4)], + requires_grad=True, + device=device, + ) + b = torch.nested.nested_tensor( + [torch.randn(9, 4, 2), torch.randn(12, 4, 2)], + requires_grad=True, + device=device, + ) + c = a + b.transpose(-1, -2) + grad_output = c.clone() + c.backward(grad_output) + self.assertEqual(a.grad, grad_output) + self.assertEqual(b.grad, grad_output.transpose(-1, -2)) + + # Test Factory Functions + def test_nested_tensor_to_padded_tensor(self, device): + for padding_val in [0, 1]: + nt = self._create_leaf_nested_tensor_from_list( + tensor_device=device, requires_grad=True + ) + + out = torch.nested.to_padded_tensor(nt, padding_val) + grad_output = torch.ones(out.shape, device=device) + out.backward(grad_output) + + self.assertEqual( + nt.grad, + torch.nested.nested_tensor( + [torch.ones(1, 2), torch.ones(7, 8)], device=device + ), + ) + + def test_nested_tensor_from_mask_and_to_padded(self, device): + N, L, D = 2, 4, 4 + mask = torch.ones(N, L, device=device) + for i in range(1, N): + end = torch.randint(1, L - 1, (1,), device=device) + mask[i, end:] = 0 + + mask[0, :] = 1 + mask = mask.bool() + + data = torch.randn( + N, L, D, requires_grad=True, dtype=torch.float64, device=device + ) + + def grad_test_func(inpt): + nt = torch._nested_tensor_from_mask(inpt, mask) + # This implicitly tests to_padded_tensor grads + return torch.nested.to_padded_tensor(nt, 0) + + assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) + + def test_nested_tensor_from_padded(self, device): + nested_size = torch.tensor([[1, 2], [2, 2]]) + padded_tensor = torch.randn(2, 2, 2, dtype=torch.float64, device=device) + padded_tensor[0, 1, :] = 0 + padded_tensor.requires_grad_() + + def grad_test_func(tensor, nested_size): + nt = torch._nested_from_padded( + tensor, nested_size, fuse_transform_0213=False + ) + # This implicitly tests to_padded_tensor grads + return torch.nested.to_padded_tensor(nt, 0) + + data = (padded_tensor, nested_size) + assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) + + def test_nested_tensor_from_padded_fused(self, device): + nested_size = torch.tensor([[1, 8], [2, 8]]) + padded_tensor = torch.randn(2, 2, 2, 4, dtype=torch.float64, device=device) + padded_tensor[0, 1, :] = 0 + padded_tensor.requires_grad_() + + def grad_test_func(tensor, nested_size): + nt = torch._nested_from_padded( + tensor, nested_size, fuse_transform_0213=True + ) + # This implicitly tests to_padded_tensor grads + return torch.nested.to_padded_tensor(nt, 0) + + data = (padded_tensor, nested_size) + assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) + + def test_nested_tensor_from_list(self, device): + a = torch.randn(1, 2, requires_grad=True, dtype=torch.float64, device=device) + b = torch.randn(2, 2, requires_grad=True, dtype=torch.float64, device=device) + c = torch.randn(10, 2, requires_grad=True, dtype=torch.float64, device=device) + + def grad_test_func(a, b, c): + c = torch.nested.as_nested_tensor([a, b, c]) + # This implictily tests to_padded_tensor grads + return torch.nested.to_padded_tensor(c, 0) + + data = (a, b, c) + assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) + + @parametrize("layout", [torch.strided, torch.jagged], name_fn=layout_name) + def test_dropout_backward(self, layout): + if layout == torch.jagged: + nt = torch.nested.nested_tensor( + [torch.randn((2, 5)), torch.randn((3, 5))], + requires_grad=True, + layout=layout, + ) + else: + nt = torch.nested.nested_tensor( + [torch.randn((2, 5)), torch.randn((3, 4))], + requires_grad=True, + layout=layout, + ) + p = 0.2 + y = torch.nn.functional.dropout(nt, p) + y.backward(nt.detach().clone()) + self.assertEqual(nt.grad, y) + + def test_nested_tensor_bmm_gradcheck(self, device): + a = torch.randn(2, 6, requires_grad=True, dtype=torch.float64, device=device) + b = torch.randn(3, 6, requires_grad=True, dtype=torch.float64, device=device) + c = torch.randn(6, 4, requires_grad=True, dtype=torch.float64, device=device) + d = torch.randn(6, 5, requires_grad=True, dtype=torch.float64, device=device) + + def grad_test_func(a, b, c, d): + nt0 = torch.nested.as_nested_tensor([a, b]) + nt1 = torch.nested.as_nested_tensor([c, d]) + result = nt0.bmm(nt1) + return torch.nested.to_padded_tensor(result, 0.0) + + data = (a, b, c, d) + assert torch.autograd.gradcheck(grad_test_func, inputs=data) + + @tf32_on_and_off(0.008) + def test_nested_tensor_bmm_backward(self, device): + nt0 = torch.nested.nested_tensor( + [torch.randn((2, 6)), torch.randn((3, 6))], + requires_grad=True, + device=device, + ) + nt1 = torch.nested.nested_tensor( + [torch.randn((6, 4)), torch.randn((6, 5))], + requires_grad=True, + device=device, + ) + with torch.no_grad(): + pt0 = torch.nested.to_padded_tensor(nt0, 0.0).requires_grad_(True) + pt1 = torch.nested.to_padded_tensor(nt1, 0.0).requires_grad_(True) + + ynt = nt0.bmm(nt1) + ypt = pt0.bmm(pt1) + ynt.backward(ynt.clone()) + ypt.backward(ypt.clone()) + + self.assertEqual(torch.nested.to_padded_tensor(nt0.grad, 0.0), pt0.grad) + self.assertEqual(torch.nested.to_padded_tensor(nt1.grad, 0.0), pt1.grad) + + def test_nested_tensor_matmul_gradcheck(self, device): + a = torch.randn(2, 6, requires_grad=True, dtype=torch.float64, device=device) + b = torch.randn(3, 6, requires_grad=True, dtype=torch.float64, device=device) + c = torch.randn(6, 4, requires_grad=True, dtype=torch.float64, device=device) + d = torch.randn(6, 5, requires_grad=True, dtype=torch.float64, device=device) + + def grad_test_func(a, b, c, d): + nt0 = torch.nested.as_nested_tensor([a, b]) + nt1 = torch.nested.as_nested_tensor([c, d]) + result = torch.matmul(nt0, nt1) + return torch.nested.to_padded_tensor(result, 0.0) + + data = (a, b, c, d) + assert torch.autograd.gradcheck(grad_test_func, inputs=data) + + def test_nested_tensor_matmul_backward(self, device): + nt0 = torch.nested.nested_tensor( + [torch.randn((7, 2, 6)), torch.randn((7, 3, 6))], + requires_grad=True, + device=device, + ) + nt1 = torch.nested.nested_tensor( + [torch.randn((7, 6, 4)), torch.randn((7, 6, 5))], + requires_grad=True, + device=device, + ) + with torch.no_grad(): + pt0 = torch.nested.to_padded_tensor(nt0, 0.0).requires_grad_(True) + pt1 = torch.nested.to_padded_tensor(nt1, 0.0).requires_grad_(True) + + ynt = torch.matmul(nt0, nt1) + ypt = torch.matmul(pt0, pt1) + ynt.backward(ynt.clone()) + ypt.backward(ypt.clone()) + + self.assertEqual(torch.nested.to_padded_tensor(nt0.grad, 0.0), pt0.grad) + self.assertEqual(torch.nested.to_padded_tensor(nt1.grad, 0.0), pt1.grad) + + def test_nested_tensor_transpose_gradcheck(self, device): + a = torch.randn(2, 5, requires_grad=True, device=device) + b = torch.randn(3, 4, requires_grad=True, device=device) + + def grad_test_func(a, b): + nt = torch.nested.as_nested_tensor([a, b]) + result = nt.transpose(-2, -1).transpose(-2, -1) + return torch.nested.to_padded_tensor(result, 0.0) + + data = (a, b) + assert torch.autograd.gradcheck(grad_test_func, inputs=data, eps=1e-3) + + def test_nested_tensor_transpose_backward(self, device): + nt = torch.nested.nested_tensor( + [torch.randn((2, 5)), torch.randn((3, 4))], + requires_grad=True, + device=device, + ) + with torch.no_grad(): + pt = torch.nested.to_padded_tensor(nt, 0.0).requires_grad_(True) + + ynt = nt.transpose(-2, -1) + ypt = pt.transpose(-2, -1) + ynt.backward(ynt.clone()) + ypt.backward(ypt.clone()) + + self.assertEqual(torch.nested.to_padded_tensor(nt.grad, 0.0), pt.grad) + + def test_nested_tensor_reshape_gradcheck(self, device): + a = torch.randn(2, 6, requires_grad=True, device=device) + b = torch.randn(3, 6, requires_grad=True, device=device) + + def grad_test_func(a, b): + nt = torch.nested.as_nested_tensor([a, b]) + result = nt.reshape(2, -1, 2, 3) + return torch.nested.to_padded_tensor(result, 0.0) + + data = (a, b) + assert torch.autograd.gradcheck(grad_test_func, inputs=data, eps=1e-3) + + def test_nested_tensor_reshape_backward(self): + nt = torch.nested.nested_tensor( + [torch.randn((2, 6)), torch.randn((3, 6))], requires_grad=True + ) + with torch.no_grad(): + pt = torch.nested.to_padded_tensor(nt, 0.0).requires_grad_(True) + + ynt = nt.reshape(2, -1, 2, 3) + ypt = pt.reshape(2, -1, 2, 3) + ynt.backward(ynt.clone()) + ypt.backward(ypt.clone()) + + self.assertEqual(torch.nested.to_padded_tensor(nt.grad, 0.0), pt.grad) + + def test_nested_tensor_squeeze_backward(self, device): + nt = torch.nested.nested_tensor( + [torch.randn((2, 6, 1)), torch.randn((3, 6, 1))], + requires_grad=True, + device=device, + ) + with torch.no_grad(): + pt = torch.nested.to_padded_tensor(nt, 0.0).requires_grad_(True) + + ynt = nt.squeeze(-1) + ypt = pt.squeeze(-1) + ynt.backward(ynt.clone()) + ypt.backward(ypt.clone()) + + self.assertEqual(torch.nested.to_padded_tensor(nt.grad, 0.0), pt.grad) + + def test_nested_tensor_squeeze_gradcheck(self, device): + a = torch.randn( + (2, 6, 1), dtype=torch.float64, requires_grad=True, device=device + ) + b = torch.randn( + (3, 6, 1), dtype=torch.float64, requires_grad=True, device=device + ) + + def grad_test_func(a, b): + nt = torch.nested.as_nested_tensor([a, b]) + result = nt.squeeze(-1) + return torch.nested.to_padded_tensor(result, 0.0) + + assert torch.autograd.gradcheck(grad_test_func, inputs=(a, b), eps=1e-3) + + def test_nested_tensor_unsqueeze_backward(self, device): + nt = torch.nested.nested_tensor( + [torch.randn((2, 6)), torch.randn((3, 6))], + requires_grad=True, + device=device, + ) + with torch.no_grad(): + pt = torch.nested.to_padded_tensor(nt, 0.0).requires_grad_(True) + + ynt = nt.unsqueeze(2) + ypt = pt.unsqueeze(2) + ynt.backward(ynt.clone()) + ypt.backward(ypt.clone()) + + self.assertEqual(torch.nested.to_padded_tensor(nt.grad, 0.0), pt.grad) + + def test_nested_tensor_unsqueeze_gradcheck(self, device): + a = torch.randn((2, 6), dtype=torch.float64, requires_grad=True, device=device) + b = torch.randn((3, 6), dtype=torch.float64, requires_grad=True, device=device) + + def grad_test_func(a, b): + nt = torch.nested.as_nested_tensor([a, b]) + result = nt.unsqueeze(-1) + return torch.nested.to_padded_tensor(result, 0.0) + + assert torch.autograd.gradcheck(grad_test_func, inputs=(a, b), eps=1e-3) + + def test_nested_tensor_linear(self, device): + a = torch.randn(1, 2, requires_grad=True, dtype=torch.float64, device=device) + b = torch.randn(2, 2, requires_grad=True, dtype=torch.float64, device=device) + c = torch.randn(3, 2, requires_grad=True, dtype=torch.float64, device=device) + + weight = torch.randn( + 2, 2, requires_grad=True, dtype=torch.float64, device=device + ) + bias = torch.randn(2, requires_grad=True, dtype=torch.float64, device=device) + + def grad_test_func(a, b, c, weight, bias=None): + nt = torch.nested.as_nested_tensor([a, b, c]) + # This implicitly tests to_padded_tensor grads + d = torch.functional.F.linear(nt, weight, bias) + return torch.nested.to_padded_tensor(d, 0) + + data = (a, b, c, weight, bias) + assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) + + # Test linear with no bias added + data = (a, b, c, weight) + assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) + + def test_nested_tensor_linear_plus_transpose(self, device): + a = torch.randn(1, 2, requires_grad=True, dtype=torch.float64, device=device) + b = torch.randn(2, 2, requires_grad=True, dtype=torch.float64, device=device) + c = torch.randn(3, 2, requires_grad=True, dtype=torch.float64, device=device) + + weight = torch.randn( + 2, 2, requires_grad=True, dtype=torch.float64, device=device + ) + bias = torch.randn(2, requires_grad=True, dtype=torch.float64, device=device) + + def grad_test_func(a, b, c, weight, bias=None): + nt = torch.nested.as_nested_tensor([a, b, c]) + # This implicitly tests to_padded_tensor grads + d = torch.functional.F.linear(nt, weight, bias) + d = d.transpose(-1, -2).contiguous() + return torch.nested.to_padded_tensor(d, 0) + + data = (a, b, c, weight, bias) + assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) + + # Test linear with no bias added + data = (a, b, c, weight) + assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) + + def test_nested_tensor_softmax(self, device): + a = torch.randn(1, 2, requires_grad=True, dtype=torch.float64, device=device) + b = torch.randn(2, 2, requires_grad=True, dtype=torch.float64, device=device) + c = torch.randn(3, 2, requires_grad=True, dtype=torch.float64, device=device) + + def grad_test_func(a, b, c, dim): + nt = torch.nested.as_nested_tensor([a, b, c]) + # This implicitly tests to_padded_tensor grads + d = torch.functional.F.softmax(nt, dim=dim) + return torch.nested.to_padded_tensor(d, 0) + + # softmax over last dim + data = (a, b, c, -1) + assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) + + def test_nested_tensor_linear_backward(self, device): + a = torch.randn(1, 2, requires_grad=False, device=device) + b = torch.randn(2, 2, requires_grad=False, device=device) + c = torch.randn(3, 2, requires_grad=False, device=device) + + weight = torch.randn(2, 2, requires_grad=True, device=device) + bias = torch.randn(2, requires_grad=True, device=device) + nt = torch.nested.as_nested_tensor([a, b, c], device=device) + + out = torch.functional.F.linear(nt, weight, bias) + + out.backward(out.clone()) + + assert weight.grad is not None + assert bias.grad is not None + + assert a.grad is None + assert b.grad is None + assert c.grad is None + + def test_values_grad_with_broadcast(self, device): + a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device) + b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device) + c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device) + + def grad_test_func(a, b, c): + nt = torch.nested.as_nested_tensor([a, b, c]) + buffer = nt.values() + return buffer.sum() + + data = (a, b, c) + assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) + + def test_to_buffer_series_ops_grad_with_broadcast(self, device): + a = torch.randn(1, 1, 2, requires_grad=True, dtype=torch.float64, device=device) + b = torch.randn(1, 1, 2, requires_grad=True, dtype=torch.float64, device=device) + c = torch.randn(1, 1, 2, requires_grad=True, dtype=torch.float64, device=device) + + def grad_test_func(a, b, c): + nt = torch.nested.as_nested_tensor([a, b, c]) + buffer = nt.values() + buffer = buffer * 2 + return buffer.exp() + + data = (a, b, c) + assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) + + def test_unbind_flow_through(self, device): + a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device) + b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device) + c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device) + + def grad_test_func(a, b, c): + nt = torch.nested.as_nested_tensor([a, b, c]) + ntT = nt.transpose(-1, -2) + unbound = ntT.unbind() + d = unbound[0] + d = torch.pow(d, 2) + return d + + data = (a, b, c) + assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) + + def test_split_with_sizes_flow_through(self, device): + a = torch.randn(2, 5, requires_grad=True, dtype=torch.float64, device=device) + b = torch.randn(3, 5, requires_grad=True, dtype=torch.float64, device=device) + c = torch.randn(4, 5, requires_grad=True, dtype=torch.float64, device=device) + + def grad_test_func(a, b, c): + nt = torch.nested.as_nested_tensor([a, b, c]) + splits = nt.split_with_sizes([2, 3], dim=-1) + unbound = splits[1].unbind() + d = unbound[0] + d = torch.pow(d, 2) + return d + + data = (a, b, c) + assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) + + def test_indexing_backward(self, device): + x0 = torch.randn((2, 5)) + x1 = torch.randn((3, 4)) + nt = torch.nested.nested_tensor([x0, x1], device=device, requires_grad=True) + self.assertEqual(nt[0], x0) + self.assertEqual(nt[-1], x1) + grad_x0 = torch.randn((2, 5), device=device) + nt[0].backward(grad_x0) + expected_grad = torch.nested.nested_tensor( + [grad_x0, torch.zeros((3, 4), device=device)] + ) + self.assertEqual(nt.grad, expected_grad) + + def test_masked_fill_backward(self, device): + a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device) + b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device) + c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device) + + def grad_test_func(a, b, c): + nt = torch.nested.as_nested_tensor([a, b, c]) + mask = nt.detach().clone().to(bool) + out = nt.masked_fill(mask, 0) + out = torch.nested.to_padded_tensor(out, 0) + return out + + data = (a, b, c) + assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) + + def test_gelu_backward(self, device): + a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device) + b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device) + c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device) + + def grad_test_func(a, b, c): + nt = torch.nested.as_nested_tensor([a, b, c]) + nt_gelu = torch.nn.functional.gelu(nt) + return torch.nested.to_padded_tensor(nt_gelu, 0) + + data = (a, b, c) + assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) + + def test_relu_backward(self, device): + a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device) + b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device) + c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device) + + def grad_test_func(a, b, c): + nt = torch.nested.as_nested_tensor([a, b, c]) + nt_relu = torch.nn.functional.relu(nt) + return torch.nested.to_padded_tensor(nt_relu, 0) + + data = (a, b, c) + assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) + + def test_selu_backward(self, device): + a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device) + b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device) + c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device) + + def grad_test_func(a, b, c): + nt = torch.nested.as_nested_tensor([a, b, c]) + nt_relu = torch.nn.functional.silu(nt) + return torch.nested.to_padded_tensor(nt_relu, 0) + + data = (a, b, c) + assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) + + def test_abs_backward(self, device): + a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device) + b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device) + c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device) + + def grad_test_func(a, b, c): + nt = torch.nested.as_nested_tensor([a, b, c]) + nt_abs = torch.abs(nt) + return torch.nested.to_padded_tensor(nt_abs, 0) + + data = (a, b, c) + assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) + + # Previously would error when input NT doesn't require grad + # NotImplementedError: Cannot access storage of UndefinedTensorImpl + def test_layer_norm_backward_edge_case(self, device): + size = 4 + a = torch.randn( + 1, 2, size, requires_grad=False, dtype=torch.float64, device=device + ) + nt = torch.nested.nested_tensor([a]) + nt_layer_norm = torch.nn.LayerNorm( + nt.size(-1), device=device, dtype=torch.float64 + ) + out = nt_layer_norm(nt) + out.backward(out.clone()) + + def test_accumulate_grad_different_strides(self, device): + a = torch.rand(1, 4, 2, requires_grad=True, dtype=torch.float64, device=device) + b = torch.rand(1, 8, 2, requires_grad=True, dtype=torch.float64, device=device) + + def grad_test_func(a, b): + nt_1 = torch.nested.as_nested_tensor([a, b]) + nt_2 = nt_1.clone() + out = torch.nn.functional.scaled_dot_product_attention(nt_1, nt_2, nt_2) + return torch.nested.to_padded_tensor(out, 0) + + data = (a, b) + assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) + + # https://github.com/pytorch/pytorch/issues/95562 + @skipIfSlowGradcheckEnv + @parametrize("size", [1024, 1023, 513, 512, 256, 128, 32, 4, 2]) + def test_layer_norm_backward(self, device, size): + a = torch.randn( + 1, 2, size, requires_grad=True, dtype=torch.float64, device=device + ) + b = torch.randn( + 2, 2, size, requires_grad=True, dtype=torch.float64, device=device + ) + c = torch.randn( + 3, 2, size, requires_grad=True, dtype=torch.float64, device=device + ) + + def grad_test_func(a, b, c): + nt = torch.nested.as_nested_tensor([a, b, c]) + layer_norm = torch.nn.LayerNorm( + nt.size(-1), device=device, dtype=torch.float64 + ) + nt_layer_norm = layer_norm(nt) + return torch.nested.to_padded_tensor(nt_layer_norm, 0) + + data = (a, b, c) + assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) + + # https://github.com/pytorch/pytorch/issues/95562 + @skipIfSlowGradcheckEnv + # Could either mark slow or reduce size + @parametrize("size", [128, 32, 4, 2]) + def test_layer_norm_backward_5d(self, device, size): + a = torch.randn( + 4, size, size, 4, requires_grad=True, dtype=torch.float64, device=device + ) + b = torch.randn( + 7, size, size, 4, requires_grad=True, dtype=torch.float64, device=device + ) + c = torch.randn( + 10, size, size, 4, requires_grad=True, dtype=torch.float64, device=device + ) + + def grad_test_func(a, b, c): + nt = torch.nested.as_nested_tensor([a, b, c]) + layer_norm = torch.nn.LayerNorm( + (size, size, nt.size(-1)), device=device, dtype=torch.float64 + ) + nt_layer_norm = layer_norm(nt) + return torch.nested.to_padded_tensor(nt_layer_norm, 0) + + data = (a, b, c) + assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) + + +# Found in torch/testing/_comparison.py +default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5} +default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6} + + +def get_rtol(true_value: torch.Tensor, computed_value: torch.Tensor) -> float: + deviation = true_value - computed_value + deviation = torch.abs(deviation / true_value) + # Fill in the nans with the default rtol + torch.nan_to_num_(deviation, nan=default_rtol[computed_value.dtype]) + return deviation.max().item() + + +def get_atol(true_value: torch.Tensor, computed_value: torch.Tensor) -> float: + deviation = true_value - computed_value + atol = torch.abs(deviation).max().item() + return atol + + +def get_tolerances( + true_value: torch.Tensor, + computed_value: torch.Tensor, + fudge_factor: Optional[float] = None, +) -> tuple[float, float]: + """Returns the absolute and relative tolerances for comparing two tensors.""" + fudge_factor = fudge_factor if fudge_factor is not None else 1.0 + atol = get_atol(true_value, computed_value) + rtol = get_rtol(true_value, computed_value) + + atol = fudge_factor * max(atol, default_atol[computed_value.dtype]) + rtol = fudge_factor * max(rtol, default_rtol[computed_value.dtype]) + # torch.isclose() has weird behavior around see: + # https://github.com/pytorch/pytorch/issues/102400 + if rtol > 1e30: + rtol = default_rtol[computed_value.dtype] + return atol, rtol + + +# We can probably parametrizing existing tests instead of having a separate +# test class as we begin to support more ops. Also maybe rewrite with OpInfos. +@markDynamoStrictTest +class TestNestedTensorSubclass(NestedTensorTestCase): + # TODO: consolidate with the below + def _get_list_for_jagged_tensor(self, nested_size, device, requires_grad=True): + Ds = nested_size[1:] + out = [] + for s in nested_size[0]: + out.append( + torch.randn( + s, + *Ds, + requires_grad=requires_grad, + device=device, + dtype=torch.float64, + ) + ) + return out + + def _get_example_tensor_lists( + self, + include_list_of_lists=True, + include_requires_grad=True, + include_inner_dim_size_1=False, + include_2d_tensor=False, + ): + def _make_tensor( + *shape, include_requires_grad=include_requires_grad, requires_grad=True + ): + return torch.randn( + *shape, + requires_grad=(requires_grad if include_requires_grad else False), + ) + + # Purposefully introduce mixed requires_grad settings for the components + # when include_requires_grad=True. + example_lists = [ + # (B, *, D) with B=4 + [ + _make_tensor(2, 5), + _make_tensor(3, 5, requires_grad=False), + _make_tensor(4, 5, requires_grad=False), + _make_tensor(6, 5), + ], + # (B, *, D_0, D_1) with B=5 + [ + _make_tensor(2, 5, 6), + _make_tensor(3, 5, 6), + _make_tensor(4, 5, 6, requires_grad=False), + _make_tensor(5, 5, 6), + _make_tensor(6, 5, 6), + ], + # (B, *, D_0, D_1, D_2) with B=6 + [ + _make_tensor(2, 5, 6, 7), + _make_tensor(3, 5, 6, 7), + _make_tensor(4, 5, 6, 7, requires_grad=False), + _make_tensor(5, 5, 6, 7), + _make_tensor(6, 5, 6, 7), + _make_tensor(7, 5, 6, 7), + ], + ] + + if include_list_of_lists: + example_lists.append( + # (B, *, D) with B=3 in list form + [ + _make_tensor(2, 5, requires_grad=False).tolist(), + _make_tensor(3, 5).tolist(), + _make_tensor(4, 5).tolist(), + ] + ) + + if include_inner_dim_size_1: + example_lists.append( + [ + _make_tensor(2, 1), + _make_tensor(3, 1, requires_grad=False), + _make_tensor(4, 1, requires_grad=False), + _make_tensor(6, 1), + ] # (B, *, 1) + ) + example_lists.append( + [ + _make_tensor(2, 5, 1), + _make_tensor(3, 5, 1, requires_grad=False), + _make_tensor(4, 5, 1, requires_grad=False), + _make_tensor(6, 5, 1), + ] # (B, *, 5, 1) + ) + + if include_2d_tensor: + example_lists.append( + [ + _make_tensor(2), + _make_tensor(3, requires_grad=False), + _make_tensor(4, requires_grad=False), + _make_tensor(6), + ] # (B, *) + ) + + return example_lists + + @dtypes(torch.float32) + @parametrize( + "contiguity", + ["contig", "noncontig_transposed", "noncontig_with_holes"], + name_fn=lambda c: c, + ) + @parametrize("weights_only", [True, False]) + def test_serialization(self, device, dtype, contiguity, weights_only): + # Test with 3 cases: + # 1. contiguous + # 2. non-contiguous transposed + # 3. non-contiguous with holes + if contiguity == "contig": + nt = random_nt_from_dims( + [4, None, 10], + device=device, + dtype=dtype, + layout=torch.jagged, + ) + elif contiguity == "noncontig_transposed": + nt = random_nt_from_dims( + [3, None, 5, 2], + device=device, + dtype=dtype, + layout=torch.jagged, + ).transpose(-3, -2) + elif contiguity == "noncontig_with_holes": + nt = torch.nested.nested_tensor_from_jagged( + values=torch.randn(10, 3, device=device, dtype=dtype), + offsets=torch.tensor([0, 3, 7, 10], device=device, dtype=torch.int64), + # these lengths specify holes + lengths=torch.tensor([1, 2, 3], device=device, dtype=torch.int64), + ) + else: + raise ValueError("invalid contiguity specified for test_serialization()") + + # Access sizes / strides to ensure cache doesn't break serialization. + # See https://github.com/pytorch/pytorch/issues/129366 + nt.size() + nt.stride() + + with tempfile.TemporaryFile() as f: + torch.save(nt, f) + f.seek(0) + nt_loaded = torch.load(f, weights_only=weights_only) + + self.assertIsNot(nt, nt_loaded) + # we expect a new offsets tensor -> different nested int upon load + self.assertEqualIgnoringNestedInts(nt, nt_loaded) + self.assertEqual(nt._ragged_idx, nt_loaded._ragged_idx) + # ensure shapes are equal except nested int + nt_rest_of_shape = ( + *nt.shape[: nt._ragged_idx], + *nt.shape[nt._ragged_idx + 1 :], + ) + nt_loaded_rest_of_shape = ( + *nt_loaded.shape[: nt_loaded._ragged_idx], + *nt_loaded.shape[nt_loaded._ragged_idx + 1 :], + ) + self.assertEqual(nt_rest_of_shape, nt_loaded_rest_of_shape) + # ensure metadata cache is carried through serialization + self.assertEqual(nt._metadata_cache, nt_loaded._metadata_cache) + # ensure lengths are carried through if present + self.assertEqual(nt._lengths, nt_loaded._lengths) + + def test_tensor_attributes(self, device): + a = torch.randn(2, 3, requires_grad=True, dtype=torch.float64, device=device) + b = torch.randn(3, 3, requires_grad=True, dtype=torch.float64, device=device) + c = torch.randn(4, 3, requires_grad=True, dtype=torch.float64, device=device) + nt = torch.nested.as_nested_tensor([a, b, c], layout=torch.jagged) + _offsets = nt.offsets() + + for op in ( + torch.ops.aten.is_non_overlapping_and_dense.default, + torch.ops.aten.sym_size.default, + torch.ops.aten.dim.default, + torch.ops.aten.numel.default, + torch.ops.aten.sym_numel.default, + torch.ops.aten.sym_stride.default, + torch.ops.aten.sym_storage_offset.default, + ): + op(nt) + + with self.assertRaisesRegex( + RuntimeError, "directly calling torch.ops.aten.size" + ): + torch.ops.aten.size.default(nt) + + nested_int = torch.nested._internal.nested_tensor.get_tensor_symint( + _offsets, coeff=1 + ) + self.assertEqual(nt.size(), (3, nested_int, 3)) + self.assertEqual(nt.shape, (3, nested_int, 3)) + self.assertEqual(nt.dim(), 3) + self.assertEqual(nt.numel(), 27) + + @parametrize("nt_dim", [3, 4, 5]) + def test_linear(self, device, nt_dim): + if nt_dim == 3: + fixed_shape = (3,) + elif nt_dim == 4: + fixed_shape = (4, 3) + elif nt_dim == 5: + fixed_shape = (5, 4, 3) + + a = torch.randn( + 2, *fixed_shape, requires_grad=True, dtype=torch.float64, device=device + ) + b = torch.randn( + 3, *fixed_shape, requires_grad=True, dtype=torch.float64, device=device + ) + c = torch.randn( + 4, *fixed_shape, requires_grad=True, dtype=torch.float64, device=device + ) + weight = torch.randn( + 4, 3, requires_grad=True, dtype=torch.float64, device=device + ) + bias = torch.randn(4, requires_grad=True, dtype=torch.float64, device=device) + + def grad_test_func(a, b, c, weight, bias): + nt = torch.nested.as_nested_tensor([a, b, c], layout=torch.jagged) + out = torch.nn.functional.linear(nt, weight, bias) + return out.values() + + gradcheck( + grad_test_func, inputs=(a, b, c, weight, bias), check_batched_grad=False + ) + + @onlyOn(["cuda", "xpu"]) + @dtypes(torch.float32) + @serialTest() + def test_linear_backward_memory_usage(self, device, dtype): + # Verify that linear_backward() doesn't use more memory than it should + # for higher dim input sizes. + # See https://github.com/pytorch/pytorch/issues/141112 + B, D, max_seq_len = 64, 512, 100 + if device == "cuda": + torch._C._cuda_clearCublasWorkspaces() + m = torch.nn.Linear(D, D, device=device) + nt = torch.nested.as_nested_tensor( + [ + torch.rand(size=[seq_len, D]) + for seq_len in torch.randint(max_seq_len, size=(B,)) + ], + layout=torch.jagged, + device=device, + ) + + # (B, j1, D) -> (B, j1, 1, D) for a higher dim input size + nt = nt.unsqueeze(-2) + # linear_backward() should not explode the max memory usage + if device == "cuda": + torch.cuda.reset_max_memory_allocated() + m(nt).sum().backward() + # expect under a GB for max memory allocated + max_after_gb = torch.cuda.max_memory_allocated(0) // (1024**3) + self.assertEqual(max_after_gb, 0) + + def test_unary_pointwise(self, device): + a = torch.randn(2, 3, requires_grad=True, dtype=torch.float64, device=device) + b = torch.randn(3, 3, requires_grad=True, dtype=torch.float64, device=device) + c = torch.randn(4, 3, requires_grad=True, dtype=torch.float64, device=device) + + def grad_test_func(a, b, c): + nt = torch.nested.as_nested_tensor([a, b, c], layout=torch.jagged) + out = torch.nn.functional.silu(nt.sin().cos()) + return out.values() + + gradcheck(grad_test_func, inputs=(a, b, c), check_batched_grad=False) + + def test_unary_pointwise_transposed_inputs(self, device): + a, b, c = ( + torch.randn( + i + 2, 5, requires_grad=True, dtype=torch.float64, device=device + ) + for i in range(3) + ) + + nt = torch.nested.nested_tensor( + [a.detach(), b.detach(), c.detach()], layout=torch.jagged + ) + nt_t = nt.transpose(1, 2) + self.assertFalse(nt_t.is_contiguous()) + out = torch.nn.functional.silu(nt_t.sin().cos()) + self.assertEqual( + out.is_contiguous(), + torch.nn.functional.silu(b.transpose(-1, -2).sin().cos()).is_contiguous(), + ) + + self.assertEqual(nt_t.shape, out.shape) + + a, b, c = ( + torch.randn( + i + 2, 5, requires_grad=True, dtype=torch.float64, device=device + ) + for i in range(3) + ) + + def grad_test_func(a, b, c): + nt = torch.nested.as_nested_tensor([a, b, c], layout=torch.jagged) + nt_t = nt.transpose(1, 2) + out = torch.nn.functional.silu(nt_t.sin().cos()) + return out.values() + + gradcheck(grad_test_func, inputs=(a, b, c), check_batched_grad=False) + + def test_binary_pointwise(self, device): + a = torch.randn(2, 3, requires_grad=True, dtype=torch.float64, device=device) + b = torch.randn(3, 3, requires_grad=True, dtype=torch.float64, device=device) + c = torch.randn(4, 3, requires_grad=True, dtype=torch.float64, device=device) + + # Incorrect usage: shape check will fail if the offsets tensor are not + # the same exact tensor object + nt1 = torch.nested.as_nested_tensor([a, b, c], layout=torch.jagged) + nt2 = torch.nested.as_nested_tensor([a, b, c], layout=torch.jagged) + + self.assertRaisesRegex( + RuntimeError, + "cannot call binary pointwise function .* with inputs of shapes", + lambda: nt1 * nt2, + ) + + # Correct usage: chain the calls using the same offsets tensor object + def grad_test_func(a, b, c): + nt1 = torch.nested.as_nested_tensor([a, b, c], layout=torch.jagged) + # TODO: Switch to public API that takes in (values, offsets) once it exists + nt2, offsets = jagged_from_list([a, b, c], nt1.offsets()) + out = nt1 * nt2 + return out.values() + + gradcheck(grad_test_func, inputs=(a, b, c), check_batched_grad=False) + + def test_binary_pointwise_transposed(self, device): + a, b, c = ( + torch.randn(i + 2, 5, dtype=torch.float64, device=device) for i in range(3) + ) + + nt1, offsets = jagged_from_list([a, b, c], None) + nt2, offsets = jagged_from_list([a, b, c], offsets) + + nt1_t = nt1.transpose(1, 2) + nt2_t = nt2.transpose(1, 2) + + # out = nt1_t * nt2_t + # self.assertFalse(nt1_t.is_contiguous()) + # self.assertEqual(out.is_contiguous(), (b.transpose(-1, -2) * b.transpose(-1, -2)).is_contiguous()) + # self.assertEqual(out.shape, nt1_t.shape) + + self.assertRaisesRegex( + RuntimeError, + "cannot call binary pointwise function mul.Tensor with inputs of shapes", + lambda: nt1 * nt2_t, + ) + + a, b, c = ( + torch.randn( + i + 2, 5, requires_grad=True, dtype=torch.float64, device=device + ) + for i in range(3) + ) + + # Correct usage: chain the calls using the same offsets tensor object + def grad_test_func(a, b, c): + nt1, offsets = jagged_from_list([a, b, c], None) + nt2, offsets = jagged_from_list([a, b, c], offsets) + nt1_t = nt1.transpose(1, 2) + nt2_t = nt2.transpose(1, 2) + out = nt1_t * nt2_t + return out.values() + + gradcheck(grad_test_func, inputs=(a, b, c), check_batched_grad=False) + + def test_binary_pointwise_with_nested_int_second_arg(self, device): + # See https://github.com/pytorch/pytorch/issues/138496 + nt = random_nt_from_dims( + [3, None, 5], + device=device, + dtype=torch.float32, + layout=torch.jagged, + ) + + with self.assertRaisesRegex(RuntimeError, "invalid argument"): + nt * nt.size(1) + + with self.assertRaisesRegex(RuntimeError, "invalid argument"): + nt + nt.size(1) + + def test_split(self, device): + a = torch.randn(2, 3, requires_grad=True, dtype=torch.float64, device=device) + b = torch.randn(3, 3, requires_grad=True, dtype=torch.float64, device=device) + c = torch.randn(4, 3, requires_grad=True, dtype=torch.float64, device=device) + + nt = torch.nested.as_nested_tensor([a, b, c], layout=torch.jagged) + out = torch.split(nt, 2, -1) + self.assertEqual(len(out), 2) + self.assertEqualIgnoringNestedInts( + out[0], + torch.nested.as_nested_tensor( + [a[:, 0:2], b[:, 0:2], c[:, 0:2]], layout=torch.jagged + ), + ) + self.assertEqualIgnoringNestedInts( + out[1], + torch.nested.as_nested_tensor( + [a[:, 2:], b[:, 2:], c[:, 2:]], layout=torch.jagged + ), + ) + + with self.assertRaisesRegex( + RuntimeError, + r"split\(\): not supported for NestedTensor on ragged dim", + ): + torch.split(nt, 2, 1) + + def test_split_with_sizes(self, device): + a = torch.randn(2, 3, requires_grad=True, dtype=torch.float64, device=device) + b = torch.randn(3, 3, requires_grad=True, dtype=torch.float64, device=device) + c = torch.randn(4, 3, requires_grad=True, dtype=torch.float64, device=device) + + nt = torch.nested.as_nested_tensor([a, b, c], layout=torch.jagged) + out = torch.split(nt, [1, 2], -1) + self.assertEqual(len(out), 2) + self.assertEqualIgnoringNestedInts( + out[0], + torch.nested.as_nested_tensor( + [a[:, 0:1], b[:, 0:1], c[:, 0:1]], layout=torch.jagged + ), + ) + self.assertEqualIgnoringNestedInts( + out[1], + torch.nested.as_nested_tensor( + [a[:, 1:], b[:, 1:], c[:, 1:]], layout=torch.jagged + ), + ) + with self.assertRaisesRegex( + RuntimeError, + r"split_with_sizes\(\): not supported for NestedTensor on ragged dim", + ): + torch.split(nt, [1, 2], 1) + + def test_softmax(self, device): + nt = random_nt_from_dims( + [3, None, 5], + device=device, + dtype=torch.float32, + layout=torch.jagged, + requires_grad=True, + ) + + # operate on dim=2 + output = nt.softmax(dim=2) + + @torch._dynamo.disable + def _compare_to_ref(nt, output, dim): + for in_component, out_component in zip(nt.unbind(), output.unbind()): + self.assertEqual(in_component.softmax(dim=dim), out_component) + + # dim=2 -> dim=1 after unbind + _compare_to_ref(nt, output, dim=1) + + # operate on dim=-1 + output2 = nt.softmax(dim=-1) + torch._dynamo.disable(self.assertEqual)(output, output2) + _compare_to_ref(nt, output2, dim=-1) + + def grad_test_func(a, b): + nt = torch.nested.as_nested_tensor([a, b], layout=torch.jagged) + out = nt.softmax(dim=-1) + return out.values() + + a = torch.rand(4, 5, requires_grad=True, dtype=torch.float64, device=device) + b = torch.rand(8, 5, requires_grad=True, dtype=torch.float64, device=device) + gradcheck(grad_test_func, inputs=(a, b), check_batched_grad=False) + + def test_views_inherit_ragged_dim(self, device): + # view + nt = random_nt_from_dims( + [4, None, 8, 10], device=device, dtype=torch.float32, layout=torch.jagged + ) + # inherit ragged dim via -1 + view = nt.view(4, -1, 80) + self.assertEqual(nt.shape[1], view.shape[1]) + # inherit batch and ragged dims via -1 + view2 = nt.view(-1, -1, 80) + self.assertEqual(nt.shape[:2], view2.shape[:2]) + + # expand + nt = random_nt_from_dims( + [3, None, 1], device=device, dtype=torch.float32, layout=torch.jagged + ) + # inherit batch and ragged dims via -1 + view = nt.expand(-1, -1, 5) + self.assertEqual(nt.shape[:2], view.shape[:2]) + + def test_view_ragged_idx_not_one(self, device): + nt = random_nt_from_dims( + [2, None, 20], device=device, dtype=torch.float32, layout=torch.jagged + ) + + view_transposed = nt.transpose(1, 2).view(2, 20, nt.size(1)) + self.assertEqual((2, 20, nt.size(1)), (view_transposed.size())) + self.assertEqual(view_transposed._base, nt._base) + + def test_unsafe_view(self, device): + nt = random_nt_from_dims( + [4, None, 8, 10], device=device, dtype=torch.float32, layout=torch.jagged + ) + # basic view + view1 = torch.ops.aten._unsafe_view(nt, (4, -1, 80)) + self.assertEqual((4, nt.size(1), 80), tuple(view1.size())) + # _unsafe_view differs from view in that the view information is not tracked + self.assertTrue(view1._base is None) + + # test an unsafe_view when ragged_idx != 1, currently only supports identity view + nt_t = nt.transpose(1, 2) + view2 = torch.ops.aten._unsafe_view(nt_t, (4, 8, nt.size(1), 10)) + self.assertEqual((4, 8, nt.size(1), 10), tuple(view2.size())) + self.assertTrue(view2._base is None) + + @xfailIfTorchDynamo + @parametrize("requires_grad", [False, True]) + def test_reshape_decomp(self, device, requires_grad): + # contiguous NT should result in view. + nt = ( + random_nt_from_dims( + [3, None, 10], + device=device, + dtype=torch.float32, + layout=torch.jagged, + ) + .detach() + .requires_grad_(requires_grad) + ) + view = nt.reshape(-1, -1, 5, 2) + self.assertEqual(view.shape[:2], nt.shape[:2]) + self.assertTrue(view._is_view() and view._base is nt) + # make sure gradients flow back + if requires_grad: + view.backward(torch.ones_like(view)) + self.assertEqual(nt.grad, torch.ones_like(nt)) + + # non-contiguous NT should result in contiguous copy + nt = random_nt_from_dims( + [3, None, 5, 2], + device=device, + dtype=torch.float32, + layout=torch.jagged, + requires_grad=requires_grad, + ) + nt_noncontig = nt.transpose(-1, -2) + self.assertFalse(nt_noncontig.is_contiguous()) + copy = nt_noncontig.reshape(-1, -1, 10) + self.assertTrue(copy.is_contiguous()) + self.assertEqual(copy.shape[:2], nt.shape[:2]) + # make sure gradients flow back + if requires_grad: + copy.backward(torch.ones_like(copy)) + self.assertEqual(nt.grad, torch.ones_like(nt)) + + def test_flatten_decomp(self, device): + nt = random_nt_from_dims( + [3, None, 5, 2], device=device, dtype=torch.float32, layout=torch.jagged + ) + flattened = nt.flatten(-2, -1) + self.assertEqual(flattened.shape, nt.view(3, -1, 10).shape) + + nt = random_nt_from_dims( + [3, None, 5, 2, 6], device=device, dtype=torch.float32, layout=torch.jagged + ) + flattened = nt.flatten(-3, -2) + self.assertEqual(flattened.shape, nt.view(3, -1, 10, 6).shape) + + def test_chunk(self, device): + # none NJT case + t = torch.randn(10, 4, 5, requires_grad=True) + t_list = t.chunk(3, dim=0) + loss = t_list[0].sum() + t_list[2].sum() + loss.backward() + + # normal case + D = 30 + B = 8 + nt = random_nt_from_dims( + [B, None, D], + device=device, + dtype=torch.float32, + layout=torch.jagged, + requires_grad=True, + ) + NUM_CHUNKS = 3 + chunks = nt.chunk(NUM_CHUNKS, dim=-1) + self.assertEqual(len(chunks), NUM_CHUNKS) + for i in range(NUM_CHUNKS): + self.assertEqual(chunks[i].shape[-1], D // NUM_CHUNKS) + + # test chunk_backward + values = torch.randn( + 5, 11, dtype=torch.float64, device=device, requires_grad=True + ) + offsets = torch.tensor([0, 2, 3, 5], device=device) + + def grad_test_func(values, offsets): + nt = torch.nested.nested_tensor_from_jagged(values, offsets) + chunks = nt.chunk(3, dim=-1) + return chunks[0].values().sum() + + assert gradcheck( + grad_test_func, + inputs=(values, offsets), + check_batched_grad=False, + ) + + # chunk on batch dim + chunks = nt.chunk(NUM_CHUNKS, dim=0) + self.assertEqual(len(chunks), NUM_CHUNKS) + chunk_size = math.ceil(B / NUM_CHUNKS) + for i in range(NUM_CHUNKS): + if i < NUM_CHUNKS - 1: + self.assertEqual(chunks[i].shape[0], chunk_size) + else: + self.assertEqual(chunks[i].shape[0], B - chunk_size * (NUM_CHUNKS - 1)) + offsets_expected = ( + nt._offsets[i * chunk_size + 1 : (i + 1) * chunk_size + 1] + - nt._offsets[i * chunk_size] + ) + self.assertEqual(chunks[i]._offsets[1:], offsets_expected) + self.assertEqual(nt._values, torch.cat([x._values for x in chunks], dim=0)) + + # doesn't support backward for chunk (dim=0) yet + loss = ( + chunks[0].values().sum() + + chunks[1].values().sum() + + chunks[2].values().sum() + ) + loss.backward() + + # chunk on ragged dim not supported + with self.assertRaisesRegex( + RuntimeError, "chunk.* not supported for NestedTensor on ragged dim" + ): + nt.chunk(2, dim=1) + + def test_squeeze(self, device): + B = 4 + D = 6 + # squeeze middle dim + nt = random_nt_from_dims( + [B, None, 1, D], device=device, dtype=torch.float32, layout=torch.jagged + ) + j0 = nt.shape[1] + + for dim_arg in [-2, 2]: + out = nt.squeeze(dim_arg) + self.assertEqual(out.shape, (B, j0, D)) + self.assertEqual(out.unsqueeze(-2), nt) + + # squeeze last dim + nt = random_nt_from_dims( + [B, None, 1], device=device, dtype=torch.float32, layout=torch.jagged + ) + j1 = nt.shape[1] + + for dim_arg in [-1, 2]: + out = nt.squeeze(dim_arg) + self.assertEqual(out.shape, (B, j1)) + self.assertEqual(out.unsqueeze(-1), nt) + + # squeeze on batch dim not supported + with self.assertRaisesRegex( + RuntimeError, "squeeze.* not supported for NestedTensor on dim=0" + ): + nt.squeeze(0) + + # squeeze on ragged dim not supported + with self.assertRaisesRegex( + RuntimeError, "squeeze.* not supported for NestedTensor on ragged dim" + ): + nt.squeeze(1) + + def test_binary_pointwise_broadcasting(self, device): + # (B, j0, 3, 4) + ts = self._get_list_for_jagged_tensor( + ((2, 3, 4), 3, 4), device, requires_grad=True + ) + # (B, j0, ?, ?) + (?) -> (B, j0, ?, ?) + # (B, j0, ?, ?) + (?, ?) -> (B, j0, ?, ?) + # (B, j0, ?, ?) + (1, ?, ?) -> (B, j0, ?, ?) + # Unsupported: (B, j0, ?, ?) + (1, 1, 1, ?, ?) -> (1, B, j0, ?, ?) + t_sizes = ( + (4,), + (1, 4), + (3, 1), + (1, 3, 1), + (1, 1, 1, 4), + # (1, 1, 1, 1, 4), (unsupported today) + ) + + def grad_test_func(t, *ts): + nt = torch.nested.as_nested_tensor(list(ts), layout=torch.jagged) + out = nt + t + return out.values() + + for t_size in t_sizes: + t = torch.rand( + t_size, requires_grad=True, device=device, dtype=torch.float64 + ) + gradcheck(grad_test_func, inputs=(t, *ts), check_batched_grad=False) + + def test_threshold_backward(self, device): + ts1 = self._get_list_for_jagged_tensor( + ((2, 3, 4), 16), device=device, requires_grad=False + ) + ts2 = self._get_list_for_jagged_tensor( + ((2, 3, 4), 16), device=device, requires_grad=False + ) + + nt1, offsets = jagged_from_list(ts1, None) + nt2, offsets = jagged_from_list(ts2, offsets) + buf1 = nt1.values().detach().clone() + buf2 = nt2.values().detach().clone() + + res_nt = torch.ops.aten.threshold_backward(nt1, nt2, 0.0) + res_dense = torch.ops.aten.threshold_backward(buf1, buf2, 0.0) + + self.assertEqual(res_dense, res_nt.values()) + + @onlyCUDA + @dtypes(torch.float32) + def test_record_stream(self, device, dtype): + def _create_nt(): + values = torch.ones(1024, 4 * 1024, device="cuda") + offsets = torch.tensor([0, 500, 1024], device="cuda", dtype=torch.int64) + lengths = offsets.diff() + nt = torch.nested.nested_tensor_from_jagged(values, offsets, lengths) + data_ptrs = { + nt._values.data_ptr(), + nt._offsets.data_ptr(), + nt._lengths.data_ptr(), + } + return nt, data_ptrs + + def fn(record_stream): + nt, data_ptrs = _create_nt() + s = torch.cuda.Stream() + + with torch.cuda.stream(s): + # emulate doing something long via sleep + per_ms = 2e7 + torch.cuda._sleep(int(per_ms * 100)) + if record_stream: + nt.record_stream(s) + return data_ptrs + + # expect memory reuse when record_stream() is not run + data_ptrs = fn(record_stream=False) + nt, nt_data_ptrs = _create_nt() + self.assertEqual(data_ptrs, nt_data_ptrs) + del nt + torch.cuda.synchronize() + + # expect memory to be preserved (no reuse) when record_stream() is run + data_ptrs = fn(record_stream=True) + nt, nt_data_ptrs = _create_nt() + self.assertEqual(len(data_ptrs.intersection(nt_data_ptrs)), 0) + + @dtypes(torch.float32) + @parametrize( + "func", + [torch.ops.aten.sum.dim_IntList, torch.ops.aten.mean.dim], + name_fn=get_op_name, + ) + @parametrize("keepdim", [False, True]) + @parametrize("requires_grad", [False, True]) + @parametrize("components_require_grad", [False, True]) + def test_jagged_op_different_output_shape_dim( + self, device, dtype, keepdim, requires_grad, components_require_grad, func + ): + """ + Operator passes when reducing on valid reduction dimensions. + This test is for operators which return an output tensor with a shape different from the input tensor. + """ + if get_op_name(func) == "mean" and not keepdim: + return + + op_name = get_op_name(func) + + ts = self._get_list_for_jagged_tensor( + ((2, 3, 4), 3, 4), device=device, requires_grad=True + ) # (B, j0, 3, 4) + + # verify correctness of shapes (assuming that ragged_idx == 1) + if op_name == "sum": + reduce_dims = ( + ((0, 1), (3, 4), (1, 1, 3, 4), (0,)), # batch, ragged + ((2, 3), (3, None), (3, None, 1, 1), (1, 2)), # non-batch, non-batch + ((0, 1, 3), (3,), (1, 1, 3, 1), (0, 2)), # batch, ragged, non-batch + ((0, 1, 2), (4,), (1, 1, 1, 4), (0, 1)), # batch, ragged, non-batch + ( + (0, 1, 2, 3), + (), + (1, 1, 1, 1), + (0, 1, 2), + ), # batch, ragged, non-batch, non-batch + ((2,), (3, None, 4), (3, None, 1, 4), (1,)), # non-batch + ) # (dims, expected shape, expected keepdim shape, reduce_dim_expected), where j0 is represented as None + elif op_name == "mean": + reduce_dims = ( + ((2,), (3, None, 4), (3, None, 1, 4), (1,)), + ((3,), (3, None, 3), (3, None, 3, 1), (2,)), + ) + + for rd, ref_shape_no_keepdim, ref_shape_keepdim, _ in reduce_dims: + nt = torch.nested.as_nested_tensor(ts, layout=torch.jagged) + out = func(nt, dim=rd, keepdim=keepdim) + ref_shape = ref_shape_keepdim if keepdim else ref_shape_no_keepdim + if not torch.compiler.is_compiling(): # if not using torch dynamo + self.assertEqual(len(out.shape), len(ref_shape)) + for o, r in zip(out.shape, ref_shape): + if r is not None: + self.assertEqual(o, r) + else: + self.assertTrue(isinstance(o, torch.SymInt)) + + # verify correctness of values + tensor_lists = self._get_example_tensor_lists( + include_list_of_lists=False, + include_requires_grad=components_require_grad, + include_inner_dim_size_1=True, + ) + for tensor_list, reduce_dim_tuple in itertools.product( + tensor_lists, reduce_dims + ): + nt = torch.nested.nested_tensor( + tensor_list, + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=requires_grad, + ) + + reduce_dim, _, _, reduce_dim_expected = reduce_dim_tuple + + if nt.dim() > reduce_dim[-1]: + out_actual = func(nt, dim=reduce_dim, keepdim=keepdim) + if nt._ragged_idx in reduce_dim: # raggedness reduced away + out_expected = func( + nt.values(), dim=reduce_dim_expected, keepdim=keepdim + ) + self.assertTrue(torch.allclose(out_actual, out_expected)) + else: # raggedness preserved + out_expected = func(nt.values(), dim=reduce_dim_expected) + self.assertTrue( + torch.allclose( + out_actual.values().view(-1), out_expected.view(-1) + ) + ) + + @dtypes(torch.float32) + @parametrize("requires_grad", [False, True]) + @parametrize("components_require_grad", [False, True]) + @parametrize( + "func", + [torch.nn.functional.softmax, torch.nn.functional.log_softmax], + name_fn=lambda func: func.__name__, + ) + def test_softmax_dim( + self, + device, + dtype, + requires_grad, + components_require_grad, + func, + ): + """ + Softmax passes when reducing on valid reduction dimensions. + """ + ts = self._get_list_for_jagged_tensor( + ((2, 3, 4), 3, 4), device=device, requires_grad=True + ) # (B, j0, 3, 4) + + output_shape = (3, None, 3, 4) + + # verify correctness of shapes (assuming that ragged_idx == 1) + reduce_dims = ( + (2, 1), + (3, 2), + ) # (reduction dimension, effective reduction dimension for baseline) + + for reduce_dim, _ in reduce_dims: + nt = torch.nested.as_nested_tensor(ts, layout=torch.jagged) + out_actual = func(nt, dim=reduce_dim) + torch._dynamo.disable(self.assertEqual)( + len(out_actual.shape), len(output_shape) + ) # disable if running on dynamo + for dim_actual, dim_expected in zip(out_actual.shape, output_shape): + if dim_expected is not None: + self.assertEqual(dim_actual, dim_expected) + else: + self.assertTrue(isinstance(dim_actual, torch.SymInt)) + + # verify correctness of values + tensor_lists = self._get_example_tensor_lists( + include_list_of_lists=False, + include_requires_grad=components_require_grad, + include_inner_dim_size_1=True, + ) + for tensor_list, reduce_dim_tuple in itertools.product( + tensor_lists, reduce_dims + ): + nt = torch.nested.nested_tensor( + tensor_list, + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=requires_grad, + ) + + reduce_dim, reduce_dim_expected = reduce_dim_tuple + + if nt.dim() > reduce_dim: + # nested tensor + out_actual = func(nt, dim=reduce_dim) + # dense tensor of dimensions 1 less than out_actual + out_expected = func(nt.values(), dim=reduce_dim_expected) + self.assertTrue( + torch.allclose(out_actual.values().view(-1), out_expected.view(-1)) + ) + + @dtypes(torch.float32) + @parametrize( + "func", + [torch.ops.aten.sum.dim_IntList, torch.ops.aten.mean.dim], + name_fn=get_op_name, + ) + @parametrize("keepdim", [False, True]) + @parametrize("requires_grad", [False, True]) + @parametrize("components_require_grad", [False, True]) + def test_op_dim_reduce_ragged_idx_1_different_output_shape( + self, device, dtype, keepdim, requires_grad, components_require_grad, func + ): + """ + Operator on NestedTensor passes when trying to reduce across ragged dimension, where ragged_idx == 1. + This test is for operators which return an output tensor with a shape different from the input tensor. + """ + if get_op_name(func) == "mean" and not keepdim: + return + + op_name = get_op_name(func) + + tensor_lists = self._get_example_tensor_lists( + include_list_of_lists=False, + include_requires_grad=components_require_grad, + include_inner_dim_size_1=True, # (B, *, 1) + ) + reduce_dim = (1,) # ragged + + for tensor_list in tensor_lists: + nt = torch.nested.nested_tensor( + tensor_list, + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=requires_grad, + ) + + out_actual = func(nt, dim=reduce_dim, keepdim=keepdim) + out_expected = torch.cat( + [func(t, dim=(reduce_dim[0] - 1)).unsqueeze(0) for t in nt.unbind()] + ) + if keepdim: + out_expected = out_expected.unsqueeze(reduce_dim[0]) + + self.assertFalse( + out_actual.is_nested, + f"{op_name}(): the result of reducing a nested tensor along the ragged dimension is a dense tensor", + ) # output is a dense tensor + self.assertEqual(out_actual, out_expected) + + @dtypes(torch.float32) + @parametrize("requires_grad", [False, True]) + @parametrize("components_require_grad", [False, True]) + def test_softmax_dim_reduce_ragged_idx_1( + self, device, dtype, requires_grad, components_require_grad + ): + """ + Softmax on NestedTensor passes when trying to reduce across ragged dimension, where ragged_idx == 1. + """ + tensor_lists = self._get_example_tensor_lists( + include_list_of_lists=False, + include_requires_grad=components_require_grad, + include_inner_dim_size_1=True, # (B, *, 1) + include_2d_tensor=True, # (B, *) + ) + reduce_dim = 1 # ragged + + for tensor_list in tensor_lists: + nt = torch.nested.nested_tensor( + tensor_list, + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=requires_grad, + ) + + out_actual = torch.nn.functional.softmax(nt, dim=reduce_dim) + out_expected = torch.cat( + [ + torch.nn.functional.softmax(t, dim=reduce_dim - 1) + for t in nt.unbind() + ] + ) + + self.assertTrue( + out_actual.is_nested, + "softmax(): the result of reducing a nested tensor along the ragged dimension is a nested tensor", + ) # output is a nested tensor + self.assertTrue(torch.allclose(out_actual.values(), out_expected)) + + @dtypes(torch.float32) + @parametrize("requires_grad", [False, True]) + @parametrize("components_require_grad", [False, True]) + @parametrize( + "func", + [torch.nn.functional.softmax, torch.nn.functional.log_softmax], + name_fn=lambda func: func.__name__, + ) + def test_softmax_reduce_batch_dim( + self, device, dtype, requires_grad, components_require_grad, func + ): + """ + Softmax on NestedTensor fails when trying to reduce across batch dimension. + """ + tensor_lists = self._get_example_tensor_lists( + include_list_of_lists=False, + include_requires_grad=components_require_grad, + include_inner_dim_size_1=True, # (B, *, 1) + ) + reduce_dim = 0 # batch + + for tensor_list in tensor_lists: + nt = torch.nested.nested_tensor( + tensor_list, + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=requires_grad, + ) + + with self.assertRaisesRegex( + RuntimeError, + "not supported when reducing across the batch dimension for NestedTensor", + ): + out = func(nt, dim=reduce_dim) + + @dtypes(torch.float32) + @parametrize("requires_grad", [False, True]) + @parametrize("components_require_grad", [False, True]) + def test_layer_norm_reduce_ragged_idx_1( + self, device, dtype, requires_grad, components_require_grad + ): + """ + Layer normalization on NestedTensor passes when trying to normalize across ragged dimension, where ragged_idx == 1. + """ + + # requires_grad = False does not currently work with dynamo tests and throws this error: + # AssertionError: SymInts must use SymNodeVariable. + # If the underlying value is static, we will create a ConstantVariable and specialize. + if torch._dynamo.is_compiling() and not requires_grad: + return + + tensor_lists = self._get_example_tensor_lists( + include_list_of_lists=False, + include_requires_grad=components_require_grad, + include_inner_dim_size_1=True, # (B, *, 1) + ) + + for tensor_list in tensor_lists: + nt = torch.nested.nested_tensor( + tensor_list, + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=requires_grad, + ) + + if ( + nt.dim() >= 3 + ): # layer norm only works for tensors with 3 or more dimensions + normalized_shape = nt.shape[nt._ragged_idx :] + + out_actual = torch.nn.functional.layer_norm( + nt, normalized_shape=normalized_shape + ) + out_expected = torch.cat( + [ + torch.nn.functional.layer_norm(t, normalized_shape=t.shape) + for t in nt.unbind() + ] + ) # e.g. in 3D tensor (B, *, M), performs layer normalization on B 2D tensors (*, M) + + self.assertTrue( + out_actual.is_nested, + "layer_norm(): the result of reducing a nested tensor along the ragged dimension is a nested tensor", + ) # output is a nested tensor + self.assertEqual(out_actual._values.shape, out_expected.shape) + self.assertTrue(torch.allclose(out_actual.values(), out_expected)) + + @dtypes(torch.float32) + @parametrize("requires_grad", [False, True]) + @parametrize("components_require_grad", [False, True]) + def test_layer_norm_2d_input( + self, + device, + dtype, + requires_grad, + components_require_grad, + ): + """ + Layer normalization on NestedTensor fails when trying to operate on a 2-dimensional tensor + """ + tensor_lists = self._get_example_tensor_lists( + include_list_of_lists=False, + include_requires_grad=components_require_grad, + include_inner_dim_size_1=True, # (B, *, 1) + include_2d_tensor=True, # (B, *) + ) + + for tensor_list in tensor_lists: + nt = torch.nested.nested_tensor( + tensor_list, + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=requires_grad, + ) + + if nt.dim() <= 2: + with self.assertRaisesRegex( + RuntimeError, + "not supported for NestedTensor objects with 2 or fewer dimensions", + ): + out = torch.nn.functional.layer_norm( + nt, normalized_shape=(nt.shape[nt._ragged_idx],) + ) + + @dtypes(torch.float32) + @parametrize("requires_grad", [False, True]) + @parametrize("components_require_grad", [False, True]) + def test_layer_norm_operate_on_batch_dim( + self, + device, + dtype, + requires_grad, + components_require_grad, + ): + """ + Layer normalization on NestedTensor fails when trying to operate on the batch dimension + """ + tensor_lists = self._get_example_tensor_lists( + include_list_of_lists=False, + include_requires_grad=components_require_grad, + include_inner_dim_size_1=True, # (B, *, 1) + include_2d_tensor=True, # (B, *) + ) + + for tensor_list in tensor_lists: + nt = torch.nested.nested_tensor( + tensor_list, + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=requires_grad, + ) + + if nt.dim() > 2: # cannot perform layer normalization on 2D tensors + with self.assertRaisesRegex( + RuntimeError, + "not supported when normalizing over the batch dimension for NestedTensor", + ): + out = torch.nn.functional.layer_norm(nt, normalized_shape=nt.shape) + + @dtypes(torch.float32) + @parametrize( + "func", + [torch.ops.aten.sum.dim_IntList, torch.ops.aten.mean.dim], + name_fn=get_op_name, + ) + @parametrize( + "transpose_offset", [1, 2] + ) # [transpose consecutive dimensions, transpose nonconsecutive dimensions] + @parametrize("keepdim", [False, True]) + @parametrize("requires_grad", [False, True]) + @parametrize("components_require_grad", [False, True]) + def test_op_dim_reduce_ragged_idx_greater_than_1_different_output_shape( + self, + device, + dtype, + keepdim, + requires_grad, + components_require_grad, + func, + transpose_offset, + ): + """ + Operator on NestedTensor passes when trying to reduce across a transposed ragged dimension, i.e. ragged_idx > 1 + This test is for operators which return an output tensor with a shape different from the input tensor. + """ + if get_op_name(func) == "mean" and not keepdim: + return + + op_name = get_op_name(func) + + tensor_lists = self._get_example_tensor_lists( + include_list_of_lists=False, + include_requires_grad=components_require_grad, + include_inner_dim_size_1=True, # (B, *, 1) + include_2d_tensor=True, # (B, *) + ) + + for tensor_list in tensor_lists: + nt = torch.nested.nested_tensor( + tensor_list, + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=requires_grad, + ) + + if nt.dim() > nt._ragged_idx + transpose_offset: + nt_transposed = nt.transpose( + nt._ragged_idx, nt._ragged_idx + transpose_offset + ) + reduce_dim = (nt_transposed._ragged_idx,) # ragged + + out_actual = func(nt_transposed, dim=reduce_dim, keepdim=keepdim) + out_expected = torch.cat( + [ + func(t, dim=(reduce_dim[0] - 1)).unsqueeze(0) + for t in nt_transposed.unbind() + ] + ) + if keepdim: + out_expected = out_expected.unsqueeze(reduce_dim[0]) + + self.assertFalse( + out_actual.is_nested, + f"{op_name}(): the result of reducing a nested tensor along the ragged dimension is a dense tensor", + ) # output is a dense tensor + self.assertEqual(out_actual, out_expected) + + @dtypes(torch.float32) + @parametrize( + "transpose_offset", [1, 2] + ) # [transpose consecutive dimensions, transpose nonconsecutive dimensions] + @parametrize("requires_grad", [False, True]) + @parametrize("components_require_grad", [False, True]) + def test_softmax_dim_reduce_ragged_idx_greater_than_1_same_output_shape( + self, + device, + dtype, + requires_grad, + components_require_grad, + transpose_offset, + ): + """ + Softmax on NestedTensor fails when trying to reduce across a transposed ragged dimension, i.e. ragged_idx > 1 + This test is for operators which return an output tensor with the same shape as the input tensor. + """ + tensor_lists = self._get_example_tensor_lists( + include_list_of_lists=False, + include_requires_grad=components_require_grad, + include_inner_dim_size_1=True, # (B, *, 1) + ) + + for tensor_list in tensor_lists: + nt = torch.nested.nested_tensor( + tensor_list, + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=requires_grad, + ) + + if nt.dim() > nt._ragged_idx + transpose_offset: + nt_transposed = nt.transpose( + nt._ragged_idx, nt._ragged_idx + transpose_offset + ) + reduce_dim = nt_transposed._ragged_idx # ragged + + with self.assertRaisesRegex( + RuntimeError, + "not supported when reducing along the ragged dimension for ragged_idx > 1 for NestedTensor", + ): + out = torch.nn.functional.softmax(nt_transposed, dim=reduce_dim) + + @dtypes(torch.float32) + @parametrize( + "func", + [torch.ops.aten.sum.dim_IntList, torch.ops.aten.mean.dim], + name_fn=get_op_name, + ) + @parametrize("keepdim", [False, True]) + @parametrize("requires_grad", [False, True]) + @parametrize("components_require_grad", [False, True]) + def test_op_dim_transpose_non_ragged_dim_different_output_shape( + self, device, dtype, keepdim, requires_grad, components_require_grad, func + ): + """ + Operator passes when reducing transposed nested tensors on valid reduction dimensions. + This test is for operators which return an output tensor with a shape different from the input tensor. + """ + if get_op_name(func) == "mean" and not keepdim: + return + + # verify correctness of shapes (assuming that ragged_idx == 1) + if get_op_name(func) == "sum": + reduce_dims = ( + ((0, 1), (3, 4), (1, 1, 3, 4), (0,)), # batch, ragged + ((2, 3), (3, None), (3, None, 1, 1), (1, 2)), # non-batch, non-batch + ((0, 1, 3), (3,), (1, 1, 3, 1), (0, 2)), # batch, ragged, non-batch + ((0, 1, 2), (4,), (1, 1, 1, 4), (0, 1)), # batch, ragged, non-batch + ( + (0, 1, 2, 3), + (), + (1, 1, 1, 1), + (0, 1, 2), + ), # batch, ragged, non-batch, non-batch + ((2,), (3, None, 4), (3, None, 1, 4), (1,)), # non-batch + ) # (dims, expected shape, expected keepdim shape, reduce_dim_expected), where j0 is represented as None + elif get_op_name(func) == "mean": + reduce_dims = ( + ((2,), (3, None, 4), (3, None, 1, 4), (1,)), + ((3,), (3, None, 3), (3, None, 3, 1), (2,)), + ) + + # verify correctness of values + tensor_lists = self._get_example_tensor_lists( + include_list_of_lists=False, + include_requires_grad=components_require_grad, + ) + for tensor_list, reduce_dim_tuple in itertools.product( + tensor_lists, reduce_dims + ): + nt = torch.nested.nested_tensor( + tensor_list, + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=requires_grad, + ).transpose(-1, -2) + + reduce_dim, _, _, reduce_dim_expected = reduce_dim_tuple + + if nt.dim() > max( + reduce_dim[-1], nt._ragged_idx + 2 + ): # ensure that transposed dimensions are non-batch, non-ragged dimensions + out_actual = func(nt, dim=reduce_dim, keepdim=keepdim) + if nt._ragged_idx in reduce_dim: # raggedness reduced away + out_expected = func( + nt.values(), dim=reduce_dim_expected, keepdim=keepdim + ) + self.assertTrue(torch.allclose(out_actual, out_expected)) + else: # raggedness preserved + out_expected = func(nt.values(), dim=reduce_dim_expected) + self.assertTrue( + torch.allclose( + out_actual.values().view(-1), out_expected.view(-1) + ) + ) + + @dtypes(torch.float32) + @parametrize("requires_grad", [False, True]) + @parametrize("components_require_grad", [False, True]) + def test_softmax_dim_transpose_non_ragged_dim( + self, + device, + dtype, + requires_grad, + components_require_grad, + ): + """ + Softmax passes when reducing transposed nested tensors on valid reduction dimensions. + This test is for operators which return an output tensor with the same shape as the input tensor. + """ + # verify correctness of shapes (assuming that ragged_idx == 1) + reduce_dims = ( + (2, 1), + (3, 2), + ) # (reduction dimension, effective reduction dimension for baseline) + + # verify correctness of values + tensor_lists = self._get_example_tensor_lists( + include_list_of_lists=False, + include_requires_grad=components_require_grad, + include_inner_dim_size_1=True, # (B, *, 1) + ) + for tensor_list, reduce_dim_tuple in itertools.product( + tensor_lists, reduce_dims + ): + nt = torch.nested.nested_tensor( + tensor_list, + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=requires_grad, + ).transpose(-1, -2) + + reduce_dim, reduce_dim_expected = reduce_dim_tuple + + if nt.dim() > max(reduce_dim, nt._ragged_idx + 2): + out_actual = torch.nn.functional.softmax( + nt, dim=reduce_dim + ) # nested tensor + out_expected = torch.nn.functional.softmax( + nt.values(), dim=reduce_dim_expected + ) # dense tensor of dimensions 1 less than out_actual + + self.assertTrue( + torch.allclose(out_actual.values().view(-1), out_expected.view(-1)) + ) + + @dtypes(torch.float32) + @parametrize("keepdim", [False, True]) + @parametrize("requires_grad", [False, True]) + @parametrize("components_require_grad", [False, True]) + def test_sum_dim_reduce_ragged_and_non_batch( + self, + device, + dtype, + keepdim, + requires_grad, + components_require_grad, + ): + """ + Sum on NestedTensor fails when trying to reduce across ragged and non-batch dimensions + """ + tensor_lists = self._get_example_tensor_lists( + include_list_of_lists=False, include_requires_grad=components_require_grad + ) + reduce_dims = ( + (1, 2), # ragged, non-batch + (1, 3), # ragged, non-batch + ) + + for tensor_list, reduce_dim in itertools.product(tensor_lists, reduce_dims): + nt = torch.nested.nested_tensor( + tensor_list, + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=requires_grad, + ) + + if nt.dim() > reduce_dim[-1]: + with self.assertRaisesRegex( + RuntimeError, + "reducing along a ragged and non-batch dimension is not supported", + ): + out = torch.sum(nt, dim=reduce_dim, keepdim=keepdim) + + @dtypes(torch.float32) + @parametrize("keepdim", [False, True]) + @parametrize("requires_grad", [False, True]) + @parametrize("components_require_grad", [False, True]) + def test_sum_dim_reduce_batch_and_non_batch( + self, + device, + dtype, + keepdim, + requires_grad, + components_require_grad, + ): + """ + Sum on NestedTensor fails when trying to reduce across batch and non-batch dimensions + """ + tensor_lists = self._get_example_tensor_lists( + include_list_of_lists=False, include_requires_grad=components_require_grad + ) + reduce_dims = ( + (0, 2), # batch, non-batch + (0, 3), # batch, non-batch + ) + + for tensor_list, reduce_dim in itertools.product(tensor_lists, reduce_dims): + nt = torch.nested.nested_tensor( + tensor_list, + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=requires_grad, + ) + + if nt.dim() > reduce_dim[-1]: + with self.assertRaisesRegex( + RuntimeError, + "reducing along the batch dimension but not the ragged dimension " + + "is not supported", + ): + out = torch.sum(nt, dim=reduce_dim, keepdim=keepdim) + + @dtypes(torch.float32) + @parametrize( + "func", + [torch.ops.aten.sum.dim_IntList, torch.ops.aten.mean.dim], + name_fn=get_op_name, + ) + @parametrize("keepdim", [False, True]) + @parametrize("requires_grad", [False, True]) + @parametrize("components_require_grad", [False, True]) + def test_op_dim_reduce_batch_only_different_output_shape( + self, device, dtype, keepdim, requires_grad, components_require_grad, func + ): + """ + Operator on NestedTensor fails when trying to reduce across batch dimension + """ + if get_op_name(func) == "mean" and not keepdim: + return + + tensor_lists = self._get_example_tensor_lists( + include_list_of_lists=False, include_requires_grad=components_require_grad + ) + reduce_dim = (0,) # batch + + for tensor_list in tensor_lists: + nt = torch.nested.nested_tensor( + tensor_list, + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=requires_grad, + ) + + with self.assertRaisesRegex( + RuntimeError, + "reducing along the batch dimension but not the ragged dimension " + + "is not supported", + ): + out = func(nt, dim=reduce_dim, keepdim=keepdim) + + @dtypes(torch.float32) + @parametrize( + "func", + [torch.ops.aten.sum.dim_IntList, torch.ops.aten.mean.dim], + name_fn=get_op_name, + ) + @parametrize("keepdim", [False, True]) + @parametrize("requires_grad", [False, True]) + @parametrize("components_require_grad", [False, True]) + def test_op_dim_with_lengths_different_output_shape( + self, + device, + dtype, + keepdim, + requires_grad, + components_require_grad, + func, + ): + """ + Operator on NestedTensor fails when trying to reduce a nested tensor with lengths, + i.e. a nested tensor with holes, if reducing on the ragged dimension. + This test is for operators which return an output tensor with different shape than the input tensor. + """ + if get_op_name(func) == "mean" and not keepdim: + return + + reduce_dims = ((1,), (2,), (2, 3)) + + lengths = torch.randint(5, 10, (20,), device=device) + offsets = torch.zeros((21,), device=device, dtype=torch.int) + torch.cumsum(lengths, dim=0, out=offsets[1:]) + + values = torch.randn( + (offsets[-1].item(), 20), + device=device, + dtype=dtype, + requires_grad=requires_grad, + ) + + nt_with_holes = torch.nested.nested_tensor_from_jagged( + values, + offsets, + lengths=offsets.diff() - 2, # arbitrary subtraction to create holes + ) + + for reduce_dim in reduce_dims: + if nt_with_holes.dim() > reduce_dim[-1]: + if nt_with_holes._ragged_idx in reduce_dim: + with self.assertRaisesRegex( + RuntimeError, + "reducing across the ragged dimension is not supported for " + + "non-contiguous nested tensors with holes", + ): + out = func(nt_with_holes, dim=reduce_dim, keepdim=keepdim) + else: + out = func(nt_with_holes, dim=reduce_dim, keepdim=keepdim) + + @dtypes(torch.float32) + @parametrize("requires_grad", [False, True]) + @parametrize("components_require_grad", [False, True]) + def test_softmax_dim_with_lengths( + self, + device, + dtype, + requires_grad, + components_require_grad, + ): + """ + Softmax on NestedTensor fails when trying to reduce a nested tensor with lengths, + i.e. a nested tensor with holes, if reducing on the ragged dimension. + """ + reduce_dims = (1, 2, 3) + + lengths = torch.randint(5, 10, (20,), device=device) + offsets = torch.zeros((21,), device=device, dtype=torch.int) + torch.cumsum(lengths, dim=0, out=offsets[1:]) + + values = torch.randn( + (offsets[-1].item(), 20), + device=device, + dtype=dtype, + requires_grad=requires_grad, + ) + + nt_with_holes = torch.nested.nested_tensor_from_jagged( + values, + offsets, + lengths=offsets.diff() - 2, # arbitrary subtraction to create holes + ) + + for reduce_dim in reduce_dims: + if nt_with_holes.dim() > reduce_dim: + if nt_with_holes._ragged_idx == reduce_dim: + with self.assertRaisesRegex( + RuntimeError, + "not supported where lengths is not None " + + "if reducing across the ragged dimension for NestedTensor", + ): + out = torch.nn.functional.softmax(nt_with_holes, dim=reduce_dim) + else: + out = torch.nn.functional.softmax(nt_with_holes, dim=reduce_dim) + + @skipIfTorchDynamo( + "ragged_size = nt_with_holes.shape[nt_with_holes._ragged_idx] does not currently work " + + "with dynamo tests and throws this error: `AssertionError: SymInts must use SymNodeVariable. " + + "If the underlying value is static, we will create a ConstantVariable and specialize.`" + ) + @dtypes(torch.float32) + @parametrize("requires_grad", [False, True]) + @parametrize("components_require_grad", [False, True]) + def test_layer_norm_with_lengths( + self, + device, + dtype, + requires_grad, + components_require_grad, + ): + """ + Layer normalization on NestedTensor fails when trying to operate on a nested tensor with lengths, + i.e. a nested tensor with holes, if operating on the ragged dimension. + """ + + # create components for nested tensor + lengths = torch.randint(5, 10, (20,), device=device) + offsets = torch.zeros((21,), device=device, dtype=torch.int) + torch.cumsum(lengths, dim=0, out=offsets[1:]) + values = torch.randn( + (offsets[-1].item(), 10, 30), + device=device, + dtype=dtype, + requires_grad=requires_grad, + ) + + nt_with_holes = torch.nested.nested_tensor_from_jagged( + values, + offsets, + lengths=offsets.diff() - 2, # arbitrary subtraction to create holes + ) + + ragged_size = nt_with_holes.shape[nt_with_holes._ragged_idx] + + normalized_shapes = ( + (10, 30), # normalization on non-ragged dimension passes + (ragged_size, 10, 30), # normalization on ragged dimension fails + ) + + for normalized_shape in normalized_shapes: + if ragged_size in normalized_shape: + with self.assertRaisesRegex( + RuntimeError, + "not supported where lengths is not None if operating on the ragged dimension for NestedTensor", + ): + out = torch.nn.functional.layer_norm( + nt_with_holes, normalized_shape=normalized_shape + ) + else: + out = torch.nn.functional.layer_norm( + nt_with_holes, normalized_shape=normalized_shape + ) + + @unittest.skipIf( + PYTORCH_CUDA_MEMCHECK, "is_pinned uses failure to detect pointer property" + ) + @onlyOn(["cuda", "xpu"]) + def test_pin_memory(self, device): + nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7)) + for nt in [nt_contiguous, nt_noncontiguous]: + self.assertFalse(nt.is_pinned()) + pinned = nt.pin_memory() + self.assertTrue(pinned.is_pinned()) + self.assertEqual(nt, pinned) + self.assertNotEqual(nt.data_ptr(), pinned.data_ptr()) + # test that pin_memory on already pinned tensor has no effect + self.assertIs(pinned, pinned.pin_memory()) + self.assertEqual(pinned.data_ptr(), pinned.pin_memory().data_ptr()) + + @torch.compiler.disable + def _validate_nt( + self, + nt, + device, + dtype, + layout, + requires_grad, + dim, + batch_size, + contiguous, + cached_min_seqlen=None, + cached_max_seqlen=None, + base=None, + ref_nt=None, + ): + # Validate a bunch of properties after NT construction. + device = torch.device(device) + self.assertEqual(nt.dim(), dim) + self.assertEqual(nt.device, device) + self.assertEqual(nt.dtype, dtype) + self.assertEqual(nt.layout, layout) + self.assertEqual(nt.requires_grad, requires_grad) + self.assertEqual(nt.is_contiguous(), contiguous) + + if layout == torch.jagged: + self.assertEqual(nt._values.device, device) + self.assertEqual(nt._offsets.device, device) + self.assertEqual(nt.shape[0], batch_size) + self.assertTrue(isinstance(nt.shape[1], torch.SymInt)) + + if base is not None: + self.assertTrue(nt._is_view() and nt._base is base) + replay_cache = nt._view_func(torch.randn_like(nt._base))._metadata_cache + self.assertEqual( + "min_seqlen" in replay_cache, cached_min_seqlen is not None + ) + self.assertEqual( + "max_seqlen" in replay_cache, cached_max_seqlen is not None + ) + + self.assertEqual( + "min_seqlen" in nt._metadata_cache, cached_min_seqlen is not None + ) + self.assertEqual( + "max_seqlen" in nt._metadata_cache, cached_max_seqlen is not None + ) + + if cached_min_seqlen is not None: + self.assertEqual(nt._min_seqlen, cached_min_seqlen) + + if cached_max_seqlen is not None: + self.assertEqual(nt._max_seqlen, cached_max_seqlen) + + if ref_nt is not None: + self.assertEqual(nt.size(0), ref_nt.size(0)) + for n1, n2 in zip(nt.unbind(), ref_nt.unbind()): + self.assertEqual(n1, n2) + + @dtypes(torch.float, torch.double, torch.half) + @parametrize("requires_grad", [False, True]) + @parametrize("components_require_grad", [False, True]) + def test_jagged_layout_construction_nested_tensor( + self, device, dtype, requires_grad, components_require_grad + ): + for tensor_list in self._get_example_tensor_lists( + include_list_of_lists=True, include_requires_grad=components_require_grad + ): + nt = torch.nested.nested_tensor( + tensor_list, + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=requires_grad, + ) + + expected_dim = torch.as_tensor(tensor_list[0]).dim() + 1 + expected_batch_size = len(tensor_list) + expected_contiguous = True + expected_min_seqlen = min( + (torch.tensor(t) if isinstance(t, list) else t).shape[0] + for t in tensor_list + ) + expected_max_seqlen = max( + (torch.tensor(t) if isinstance(t, list) else t).shape[0] + for t in tensor_list + ) + self._validate_nt( + nt, + device, + dtype, + torch.jagged, + requires_grad, + expected_dim, + expected_batch_size, + expected_contiguous, + expected_min_seqlen, + expected_max_seqlen, + ) + + # Make sure grads -don't- flow back into original tensors for nested_tensor() + if requires_grad: + (nt * 2).backward(torch.ones_like(nt)) + for t in tensor_list: + t = t if isinstance(t, torch.Tensor) else torch.as_tensor(t) + self.assertTrue(t.grad is None) + + @dtypes(torch.float, torch.double, torch.half) + @parametrize("components_require_grad", [False, True]) + def test_jagged_layout_construction_as_nested_tensor( + self, device, dtype, components_require_grad + ): + # NB: as_nested_tensor(tensor_list) doesn't support lists of lists for tensor_list + for tensor_list in self._get_example_tensor_lists( + include_list_of_lists=False, include_requires_grad=components_require_grad + ): + nt = torch.nested.as_nested_tensor( + tensor_list, device=device, dtype=dtype, layout=torch.jagged + ) + + # nt.requires_grad=True should be set if at least one component requires grad + expected_dim = tensor_list[0].dim() + 1 + expected_batch_size = len(tensor_list) + expected_contiguous = True + expected_min_seqlen = min( + (torch.tensor(t) if isinstance(t, list) else t).shape[0] + for t in tensor_list + ) + expected_max_seqlen = max( + (torch.tensor(t) if isinstance(t, list) else t).shape[0] + for t in tensor_list + ) + self._validate_nt( + nt, + device, + dtype, + torch.jagged, + components_require_grad, + expected_dim, + expected_batch_size, + expected_contiguous, + expected_min_seqlen, + expected_max_seqlen, + ) + + # Make sure grads flow back into original tensors for as_nested_tensor() + if components_require_grad: + (nt * 2).backward(torch.ones_like(nt)) + for t in tensor_list: + if t.requires_grad: + self.assertEqual(t.grad, torch.ones_like(t) * 2) + else: + self.assertTrue(t.grad is None) + + @xfailIfTorchDynamo + @unittest.skipIf( + PYTORCH_CUDA_MEMCHECK, "is_pinned uses failure to detect pointer property" + ) + @onlyOn(["cuda", "xpu"]) + def test_jagged_layout_construction_with_pinned_memory(self, device): + for tensor_list in self._get_example_tensor_lists(): + nt = torch.nested.nested_tensor( + tensor_list, layout=torch.jagged, device="cpu", pin_memory=True + ) + + expected_dim = torch.as_tensor(tensor_list[0]).dim() + 1 + expected_batch_size = len(tensor_list) + expected_min_seqlen = min( + (torch.tensor(t) if isinstance(t, list) else t).shape[0] + for t in tensor_list + ) + expected_max_seqlen = max( + (torch.tensor(t) if isinstance(t, list) else t).shape[0] + for t in tensor_list + ) + self._validate_nt( + nt, + device="cpu", + dtype=torch.float32, + layout=torch.jagged, + requires_grad=False, + dim=expected_dim, + batch_size=expected_batch_size, + contiguous=True, + cached_min_seqlen=expected_min_seqlen, + cached_max_seqlen=expected_max_seqlen, + ) + self.assertTrue(nt.is_pinned()) + + @dtypes(torch.float, torch.double, torch.half) + @parametrize("requires_grad", [False, True]) + @parametrize("values_is_view", [False, True]) + def test_jagged_view_from_values_offsets( + self, device, dtype, requires_grad, values_is_view + ): + if values_is_view: + # make values a view of base + base = torch.randn( + 2, 3, 4, 5, 6, device=device, dtype=dtype, requires_grad=requires_grad + ) + values = base.flatten(0, -2) + else: + values = torch.randn( + 10, 5, device=device, dtype=dtype, requires_grad=requires_grad + ) + offsets = torch.tensor([0, 2, 4, 6, 10], device=device, dtype=torch.int64) + + nt = nested_view_from_values_offsets(values, offsets) + + expected_dim = values.dim() + 1 + expected_batch_size = offsets.shape[0] - 1 + expected_base = base if values_is_view else values + lengths = offsets.diff() + self._validate_nt( + nt, + device, + dtype, + torch.jagged, + requires_grad, + expected_dim, + expected_batch_size, + # ensure NT is a proper view + base=expected_base, + contiguous=True, + # if no min / max are passed, expect the metadata cache to be empty + cached_min_seqlen=None, + cached_max_seqlen=None, + ) + + if requires_grad: + # Make sure grads flow back + (nt * 2).backward(torch.ones_like(nt)) + + @torch.compiler.disable + def _check_grad(t): + self.assertTrue(t.grad is not None) + self.assertEqual(t.grad, torch.ones_like(t) * 2) + + _check_grad(base if values_is_view else values) + + @dtypes(torch.float) + @parametrize("pass_min_max", [False, True]) + def test_nested_tensor_from_jagged(self, device, dtype, pass_min_max): + # === construct from (values, offsets) === + values = torch.randn(10, 5, device=device, dtype=dtype) + offsets = torch.tensor([0, 2, 4, 6, 10], device=device, dtype=torch.int64) + + # compute min / max seqlen + lengths = offsets.diff() + min_seqlen = lengths.min().item() + max_seqlen = lengths.max().item() + + if pass_min_max: + nt = torch.nested.nested_tensor_from_jagged( + values, offsets=offsets, min_seqlen=min_seqlen, max_seqlen=max_seqlen + ) + else: + nt = torch.nested.nested_tensor_from_jagged(values, offsets=offsets) + self._validate_nt( + nt, + device, + dtype, + torch.jagged, + requires_grad=False, + dim=3, + batch_size=4, + contiguous=True, + cached_min_seqlen=(min_seqlen if pass_min_max else None), + cached_max_seqlen=(max_seqlen if pass_min_max else None), + base=values, + ) + + # === construct from (values, offsets, lengths) === + lengths = torch.tensor([2, 1, 1, 2], device=device) + + # compute min / max seqlen + min_seqlen = lengths.min().item() + max_seqlen = lengths.max().item() + + if pass_min_max: + nt = torch.nested.nested_tensor_from_jagged( + values, + offsets=offsets, + lengths=lengths, + min_seqlen=min_seqlen, + max_seqlen=max_seqlen, + ) + else: + nt = torch.nested.nested_tensor_from_jagged( + values, offsets=offsets, lengths=lengths + ) + + # when both offsets / lengths are specified, expect non-contiguous + self._validate_nt( + nt, + device, + dtype, + torch.jagged, + requires_grad=False, + dim=3, + batch_size=4, + contiguous=False, + cached_min_seqlen=(min_seqlen if pass_min_max else None), + cached_max_seqlen=(max_seqlen if pass_min_max else None), + base=values, + ) + self.assertIs(nt.lengths(), lengths) + + # === construct from (values, lengths) === + values = torch.randn(14, 5, device=device, dtype=dtype) + lengths = torch.tensor([2, 3, 4, 5], device=device) + + # compute min / max seqlen + min_seqlen = lengths.min().item() + max_seqlen = lengths.max().item() + + if pass_min_max: + nt = torch.nested.nested_tensor_from_jagged( + values, lengths=lengths, min_seqlen=min_seqlen, max_seqlen=max_seqlen + ) + else: + nt = torch.nested.nested_tensor_from_jagged(values, lengths=lengths) + + # for now, if only lengths is specified, convert to offsets to integrate best with the + # existing kernels + expected_offsets = torch.tensor([0, 2, 5, 9, 14], device=device) + expected_nt = torch.nested.nested_tensor_from_jagged( + values, offsets=expected_offsets + ) + self._validate_nt( + nt, + device, + dtype, + torch.jagged, + requires_grad=False, + dim=3, + batch_size=4, + contiguous=True, + cached_min_seqlen=(min_seqlen if pass_min_max else None), + cached_max_seqlen=(max_seqlen if pass_min_max else None), + base=values, + ref_nt=expected_nt, + ) + + # error case: no offsets or lengths + with self.assertRaisesRegex( + RuntimeError, "At least one of offsets or lengths is required" + ): + torch.nested.nested_tensor_from_jagged(values, offsets=None, lengths=None) + + with self.assertRaisesRegex(ValueError, "Expected jagged_dim >=1, but got 0."): + torch.nested.nested_tensor_from_jagged( + values, lengths=lengths, jagged_dim=0 + ) + + @onlyCPU + def test_nested_tensor_from_jagged_fx_trace(self, device): + def fn(x, y): + return torch.nested.nested_tensor_from_jagged(x, y) + + def user_unwrapped(x, y): + return fn(x, y) + + with self.assertRaisesRegex( + RuntimeError, + "torch.nested.nested_tensor_from_jagged does not support tracing with fx.symbolic_trace", + ): + torch.fx.symbolic_trace(user_unwrapped) + + @dtypes(torch.float, torch.double, torch.half) + @parametrize("dim", range(5)) + @parametrize( + "layout", + [torch.strided, torch.jagged], + name_fn=lambda l: f"layout_{str(l).split('.')[1]}", + ) + @parametrize("requires_grad", [False, True]) + @parametrize("contiguous", [False, True]) + def test_as_nested_tensor_from_tensor( + self, device, dtype, dim, layout, requires_grad, contiguous + ): + if dim == 0: + t = torch.tensor(3.0, requires_grad=requires_grad) + else: + t = torch.randn(*(3 for _ in range(dim)), requires_grad=requires_grad) + assert t.dim() == dim + + if dim < 2: + # 0-1 dim tensors can't be converted to NTs + with self.assertRaisesRegex( + RuntimeError, "Expected tensor argument to have dim" + ): + nt = torch.nested.as_nested_tensor( + t, device=device, dtype=dtype, layout=layout + ) + return + + orig_t = t + if not contiguous: + t = t.transpose(0, 1) + + nt = torch.nested.as_nested_tensor(t, device=device, dtype=dtype, layout=layout) + expected_dim = t.dim() + expected_batch_size = t.size(0) + expected_seqlen = t.size(1) if layout == torch.jagged else None + self._validate_nt( + nt, + device, + dtype, + layout, + requires_grad=requires_grad, + dim=dim, + batch_size=expected_batch_size, + contiguous=True, + cached_min_seqlen=expected_seqlen, + cached_max_seqlen=expected_seqlen, + ) + + if torch.device(device) == t.device and dtype == t.dtype and contiguous: + # should be the non-copying (view) case + self.assertTrue(nt._is_view() and nt._base is t) + + # should have equivalent components to construction from unbound tensor list + nt_from_unbind = torch.nested.as_nested_tensor( + list(t.unbind(0)), device=device, dtype=dtype, layout=layout + ) + self.assertEqualIgnoringNestedInts(nt, nt_from_unbind) + + # ensure call on a NT with the same properties returns the NT directly + nt2 = torch.nested.as_nested_tensor( + nt, device=device, dtype=dtype, layout=layout + ) + self.assertTrue(nt is nt2) + + # ensure call with device=None uses input tensor device + nt3 = torch.nested.as_nested_tensor( + t.to(device=device, dtype=dtype), + device=None, + dtype=None, + layout=layout, + ) + self._validate_nt( + nt3, + device, + dtype, + layout, + requires_grad=requires_grad, + dim=dim, + batch_size=expected_batch_size, + contiguous=True, + cached_min_seqlen=expected_seqlen, + cached_max_seqlen=expected_seqlen, + ) + + # we don't support conversion between layouts this way atm + other_layout = torch.strided if layout == torch.jagged else torch.jagged + with self.assertRaisesRegex( + RuntimeError, "Converting between nested tensor layouts is not supported" + ): + torch.nested.as_nested_tensor( + nt, device=device, dtype=dtype, layout=other_layout + ) + + if requires_grad: + # make sure gradients flow back into inputs + (nt * 2).backward(torch.ones_like(nt)) + self.assertEqual(orig_t.grad, torch.ones_like(orig_t) * 2) + + @dtypes(torch.float32) + def test_construction_from_list(self, device, dtype): + from torch.fx.experimental.symbolic_shapes import is_nested_int + + # success case: single ragged dim anywhere but the batch dim + for nt_dim in [2, 3, 4]: + for ragged_dim in range(1, nt_dim): + B = 6 + shapes = [list(range(3, 3 + nt_dim - 1)) for _ in range(B)] + for b in range(B): + # subtract 1 to convert to component dim space + shapes[b][ragged_dim - 1] = torch.randint( + 2, 9, (1,), device=device, dtype=torch.int64 + ).item() + + components = [ + torch.randn(shape, device=device, dtype=dtype) for shape in shapes + ] + nt = torch.nested.nested_tensor(components, layout=torch.jagged) + + self.assertEqual(nt.dim(), nt_dim) + self.assertEqual(nt._ragged_idx, ragged_dim) + for d in range(nt_dim): + self.assertEqual(d == ragged_dim, is_nested_int(nt.shape[d])) + + # error case: empty list + with self.assertRaisesRegex( + RuntimeError, "Cannot construct a nested tensor from an empty tensor list" + ): + torch.nested.nested_tensor([], layout=torch.jagged) + + # error case: list of zero-dim tensors + with self.assertRaisesRegex( + RuntimeError, + "Cannot construct a nested tensor from a list of zero-dim tensors", + ): + torch.nested.nested_tensor( + [ + torch.tensor(3.0, device=device, dtype=dtype), + torch.tensor(4.0, device=device, dtype=dtype), + torch.tensor(5.0, device=device, dtype=dtype), + ], + layout=torch.jagged, + ) + + # error case: multiple ragged dims + with self.assertRaisesRegex( + RuntimeError, + "Cannot represent given tensor list as a nested tensor with the jagged layout", + ): + torch.nested.nested_tensor( + [ + torch.randn(2, 3, device=device, dtype=dtype), + torch.randn(4, 5, device=device, dtype=dtype), + ], + layout=torch.jagged, + ) + + # error case: components on multiple devices + if "cuda" in device: + with self.assertRaisesRegex( + RuntimeError, + "When constructing a nested tensor, all tensors in list must be on the same device", + ): + torch.nested.nested_tensor( + [ + torch.randn(2, 3, device=device, dtype=dtype), + torch.randn(2, 4, device="cpu", dtype=dtype), + ], + layout=torch.jagged, + ) + + # error case: components with multiple dtypes + with self.assertRaisesRegex( + RuntimeError, + "When constructing a nested tensor, all tensors in list must have the same dtype", + ): + torch.nested.nested_tensor( + [ + torch.randn(2, 3, device=device, dtype=dtype), + torch.randn(2, 4, device=device, dtype=torch.float64), + ], + layout=torch.jagged, + ) + + # error case: components with multiple dims + with self.assertRaisesRegex( + RuntimeError, + "When constructing a nested tensor, all tensors in list must have the same dim", + ): + torch.nested.nested_tensor( + [ + torch.randn(2, 3, device=device, dtype=dtype), + torch.randn(2, 3, 4, device=device, dtype=dtype), + ], + layout=torch.jagged, + ) + + @dtypes(torch.double, torch.half) + @onlyOn(["cuda", "xpu"]) + def test_device_dtype_transfer_updates_offsets(self, device, dtype): + for tensor_list in self._get_example_tensor_lists(): + orig_device = torch.device("cpu") + orig_dtype = torch.float32 + nt = torch.nested.nested_tensor( + tensor_list, layout=torch.jagged, device=orig_device, dtype=orig_dtype + ) + + self.assertEqual(torch.int64, nt.offsets().dtype) + nt = nt.to(device=device).to(dtype=dtype) + + # offsets should still be int64 on the new device + self.assertEqual(nt.values().device, nt.offsets().device) + self.assertEqual(torch.int64, nt.offsets().dtype) + + def test_unbind(self, device): + for tensor_list in self._get_example_tensor_lists(): + nt = torch.nested.nested_tensor( + tensor_list, layout=torch.jagged, device=device + ) # ragged_idx = 1 + out = nt.unbind() + self.assertEqual(len(out), len(tensor_list)) + for i, t in enumerate(out): + self.assertEqual(t, tensor_list[i]) + + @parametrize("ragged_idx", [2, 3]) + def test_unbind_transpose(self, device, ragged_idx): + for tensor_list in self._get_example_tensor_lists(): + nt = torch.nested.nested_tensor( + tensor_list, layout=torch.jagged, device=device + ) + if ragged_idx < nt.dim(): + nt = nt.transpose(1, ragged_idx) # set ragged_idx + out = nt.unbind() + self.assertEqual(len(out), len(tensor_list)) + for i, t in enumerate(out): + self.assertEqual( + t.transpose(0, ragged_idx - 1), tensor_list[i] + ) # transpose back each element of result + + def test_unbind_transpose_ragged_idx_last_dim(self, device): + for tensor_list in self._get_example_tensor_lists(): + nt = torch.nested.nested_tensor( + tensor_list, layout=torch.jagged, device=device + ).transpose( + 1, -1 + ) # set ragged_idx = last dimension + out = nt.unbind() + self.assertEqual(len(out), len(tensor_list)) + for i, t in enumerate(out): + self.assertEqual( + t.transpose(0, -1), tensor_list[i] + ) # transpose back each element of result + + def test_unbind_lengths(self, device): + values = torch.randn(16, 128, device=device) + offsets = torch.tensor([0, 8, 12, 13, 16], device=device) + lengths = torch.tensor([6, 2, 1, 2], device=device) + nt = torch.nested.nested_tensor_from_jagged( + values, offsets=offsets, lengths=lengths + ) # 3D nested tensor + + tensor_list = [] + for i in range(offsets.shape[0] - 1): + tensor_list.append(values[offsets[i] : (offsets[i] + lengths[i])]) + + out = nt.unbind() + self.assertEqual(len(out), len(tensor_list)) + for i, t in enumerate(out): + self.assertEqual(t, tensor_list[i]) + + def test_unbind_lengths_ragged_idx_1(self, device): + values = torch.randn(16, 8, 128, device=device) + offsets = torch.tensor([0, 8, 12, 13, 16], device=device) + lengths = torch.tensor([6, 2, 1, 2], device=device) + ragged_idx = 1 + nt = torch.nested._internal.nested_tensor.NestedTensor( + values, offsets=offsets, lengths=lengths, _ragged_idx=ragged_idx + ) # 4D nested tensor + + tensor_list = [] + for i in range(offsets.shape[0] - 1): + tensor_list.append(values[offsets[i] : (offsets[i] + lengths[i]), :, :]) + + out = nt.unbind() + + self.assertEqual(len(out), len(tensor_list)) + for i, t in enumerate(out): + self.assertEqual(t, tensor_list[i]) + + def test_unbind_lengths_ragged_idx_equals_2_bad_dim(self, device): + values = torch.randn(16, 8, 128, device=device) + offsets = torch.tensor([0, 8, 12, 13, 16], device=device) + lengths = torch.tensor([6, 2, 1, 2], device=device) + ragged_idx = 2 + nt = torch.nested._internal.nested_tensor.NestedTensor( + values, offsets=offsets, lengths=lengths, _ragged_idx=ragged_idx + ) # 4D nested tensor + + self.assertRaisesRegex( + RuntimeError, + r"unbind\(\): nested tensor offsets and lengths.*", + lambda: nt.unbind(), + ) + + def test_unbind_lengths_ragged_idx_2(self, device): + values = torch.randn(16, 8, 128, device=device) + offsets = torch.tensor([0, 2, 4, 8], device=device) + lengths = torch.tensor([2, 1, 3], device=device) + ragged_idx = 2 + nt = torch.nested._internal.nested_tensor.NestedTensor( + values, offsets=offsets, lengths=lengths, _ragged_idx=ragged_idx + ) # 4D nested tensor + + tensor_list = [] + for i in range(offsets.shape[0] - 1): + tensor_list.append(values[:, offsets[i] : (offsets[i] + lengths[i]), :]) + + out = nt.unbind() + + self.assertEqual(len(out), len(tensor_list)) + for i, t in enumerate(out): + self.assertEqual(t, tensor_list[i]) + + def test_unbind_lengths_ragged_idx_3(self, device): + values = torch.randn(16, 8, 128, device=device) + offsets = torch.tensor([0, 100, 128], device=device) + lengths = torch.tensor([50, 28], device=device) + ragged_idx = 3 + nt = torch.nested._internal.nested_tensor.NestedTensor( + values, offsets=offsets, lengths=lengths, _ragged_idx=ragged_idx + ) # 4D nested tensor + + tensor_list = [] + for i in range(offsets.shape[0] - 1): + tensor_list.append(values[:, :, offsets[i] : (offsets[i] + lengths[i])]) + + out = nt.unbind() + + self.assertEqual(len(out), len(tensor_list)) + for i, t in enumerate(out): + self.assertEqual(t, tensor_list[i]) + + @skipIfTorchDynamo( + "TorchDynamo raises an error for ragged_idx == 0 earlier than Torch" + ) + def test_unbind_lengths_ragged_idx_0(self, device): + values = torch.randn(16, 8, 128, device=device) + offsets = torch.tensor([0, 100, 128], device=device) + lengths = torch.tensor([50, 28], device=device) + ragged_idx = 0 + nt = torch.nested._internal.nested_tensor.NestedTensor( + values, offsets=offsets, lengths=lengths, _ragged_idx=ragged_idx + ) # 4D nested tensor + + tensor_list = [] + for i in range(offsets.shape[0] - 1): + tensor_list.append(values[:, :, offsets[i] : (offsets[i] + lengths[i])]) + + self.assertRaisesRegex( + RuntimeError, + r"unbind\(\): nested tensor.*out of bounds", + lambda: nt.unbind(), + ) + + def test_narrow(self, device): + starts = torch.tensor([0, 1, 2, 3, 4], device=device, dtype=torch.int64) + lengths = torch.tensor([3, 2, 2, 1, 5], device=device, dtype=torch.int64) + buffer = ( + torch.arange(0, 10, device=device, dtype=torch.int64) + .unsqueeze(0) + .expand(5, -1) + .clone() + .detach() + ) + nt = torch.nested.narrow(buffer, 1, starts, lengths, layout=torch.jagged) + + self.assertTrue(nt._is_view() and nt._base is buffer) + + # TODO: Use this approach when unbind is functional + # unbinded_nt = nt.unbind() + # for i in range(starts.shape[0]): + # self.assertEqual(torch.arange(starts[i], starts[i] + lengths[i], device=device, dtype=torch.int64), unbinded_nt[i]) + for i in range(starts.shape[0]): + self.assertEqual( + torch.arange( + starts[i], starts[i] + lengths[i], device=device, dtype=torch.int64 + ), + nt.values()[nt.offsets()[i] : (nt.offsets()[i] + nt.lengths()[i])], + ) + + def test_njt_cat(self, device): + offsets = torch.tensor([0, 2, 3], device=device, dtype=torch.int64) + values_1 = torch.randn( + 3, 2, dtype=torch.float64, device=device, requires_grad=True + ) + values_2 = torch.randn( + 3, 4, dtype=torch.float64, device=device, requires_grad=True + ) + + def grad_test_func(values_1, values_2, offsets): + nt_1 = torch.nested.nested_tensor_from_jagged(values_1, offsets) + nt_2 = torch.nested.nested_tensor_from_jagged(values_2, offsets) + nt_3 = torch.cat([nt_1, nt_2], dim=-1) + return nt_3.values() + + assert gradcheck( + grad_test_func, + inputs=(values_1, values_2, offsets), + check_batched_grad=False, + ) + + def test_is_contiguous(self, device): + a = torch.randn(2, 3, requires_grad=True, dtype=torch.float64, device=device) + b = torch.randn(3, 3, requires_grad=True, dtype=torch.float64, device=device) + c = torch.randn(4, 3, requires_grad=True, dtype=torch.float64, device=device) + nt_contiguous = torch.nested.as_nested_tensor([a, b, c], layout=torch.jagged) + + starts_nc = torch.tensor([0, 1, 2, 3, 4], device=device, dtype=torch.int64) + lengths_nc = torch.tensor([3, 2, 2, 1, 5], device=device, dtype=torch.int64) + narrow_base = ( + torch.arange(0, 10, device=device, dtype=torch.int64) + .unsqueeze(0) + .expand(5, -1) + .clone() + ) + nt_noncontiguous = torch.nested.narrow( + narrow_base, 1, starts_nc, lengths_nc, layout=torch.jagged + ) + + starts_c = torch.tensor([1, 0, 0, 0, 0], device=device, dtype=torch.int64) + lengths_c = torch.tensor([9, 10, 10, 10, 8], device=device, dtype=torch.int64) + nt_contiguous_narrow = torch.nested.narrow( + narrow_base, 1, starts_c, lengths_c, layout=torch.jagged + ) + + # Test contiguous case + assert nt_contiguous.is_contiguous() + + # Test narrow case + assert not nt_noncontiguous.is_contiguous() + assert nt_contiguous_narrow.is_contiguous() + + # Test querying by memory_format + self.assertTrue( + nt_contiguous.is_contiguous(memory_format=torch.contiguous_format) + ) + self.assertTrue( + not nt_noncontiguous.is_contiguous(memory_format=torch.contiguous_format) + ) + self.assertTrue( + nt_contiguous_narrow.is_contiguous(memory_format=torch.contiguous_format) + ) + + def test_layout_under_torch_dispatch_mode(self): + from torch.testing._internal.logging_tensor import ( + capture_logs_with_logging_tensor_mode, + ) + + nt = random_nt_from_dims( + [2, None, 3], torch.device("cpu"), torch.float32, layout=torch.jagged + ) + + with capture_logs_with_logging_tensor_mode(): + self.assertEqual(nt.layout, torch.jagged) + + @skipIfTorchDynamo("Not a suitable test for TorchDynamo") + @parametrize( + "func", [torch.empty_like, torch.randn_like], name_fn=lambda f: f.__name__ + ) + def test_like_shape(self, func): + nt = random_nt_from_dims( + [2, None, 3], torch.device("cpu"), torch.float32, layout=torch.jagged + ) + nt_like = func(nt) + + for nt_ub in nt_like.unbind(): + t_like = func(nt_ub) + self.assertEqual(nt_ub.shape, t_like.shape) + + @skipIfTorchDynamo("Not a suitable test for TorchDynamo") + @parametrize( + "func", + [ + torch.empty_like, + torch.full_like, + torch.ones_like, + torch.rand_like, + torch.randint_like, + torch.randn_like, + torch.zeros_like, + ], + name_fn=lambda f: f.__name__, + ) + def test_like_value(self, func, device): + dtype = torch.float32 if func is not torch.randint_like else torch.int32 + for nt in _sample_njts(device=device, dtype=dtype): + extra_kwarg_sets = [{}] + if func is torch.full_like: + extra_kwarg_sets = [{"fill_value": 4.2}] + elif func is torch.randint_like: + extra_kwarg_sets = [{"high": 5}, {"low": 4, "high": 9}] + + # only test changing dtype / device from CUDA -> CPU because CUDA might not be + # available when running this test for CPU + change_dtype_device_settings = ( + [False, True] if "cuda" in device else [False] + ) + for change_dtype_device in change_dtype_device_settings: + if change_dtype_device: + new_dtype = ( + torch.float64 if func is not torch.randint_like else torch.int64 + ) + new_device = "cpu" if "cuda" in device else device + new_layout = torch.strided + for extra_kwargs in extra_kwarg_sets: + extra_kwargs.update( + { + "dtype": new_dtype, + "device": new_device, + "layout": new_layout, + } + ) + + for extra_kwargs in extra_kwarg_sets: + nt_like = func(nt, **extra_kwargs) + self.assertEqual(nt.shape, nt_like.shape) + if change_dtype_device: + self.assertNotEqual(nt.device, nt_like.device) + self.assertNotEqual(nt.device, nt_like.dtype) + # layout should be ignored since only torch.jagged is supported + self.assertEqual(torch.jagged, nt_like.layout) + else: + self.assertEqual(nt.device, nt_like.device) + self.assertEqual(nt.dtype, nt_like.dtype) + self.assertEqual(nt.layout, nt_like.layout) + self.assertEqual(nt.layout, torch.jagged) + + # don't bother trying to compare random or empty values + if func not in [ + torch.empty_like, + torch.rand_like, + torch.randn_like, + torch.randint_like, + ]: + for nt_ub in nt_like.unbind(): + t_like = func(nt_ub, **extra_kwargs) + self.assertEqual(nt_ub, t_like) + + def test_noncontiguous_pointwise(self, device): + a = torch.randn(2, 3, 4, requires_grad=True, dtype=torch.float64, device=device) + b = torch.randn(3, 3, 4, requires_grad=True, dtype=torch.float64, device=device) + c = torch.randn(4, 3, 4, requires_grad=True, dtype=torch.float64, device=device) + nt = torch.nested.nested_tensor([a, b, c], layout=torch.jagged) + # transpose ragged dim + transposed = nt.transpose(1, 2) + self.assertFalse(transposed.is_contiguous()) + clone = transposed.clone() + + def check_nt_equality(x, y): + self.assertEqual(x.values(), y.values()) + self.assertEqual(x.offsets(), y.offsets()) + self.assertEqual(x._ragged_idx, y._ragged_idx) + self.assertEqual(x.shape, y.shape) + + self.assertFalse(clone.is_contiguous()) + check_nt_equality(clone, transposed) + + clone_contig = transposed.clone(memory_format=torch.contiguous_format) + self.assertTrue(clone_contig.is_contiguous()) + check_nt_equality(clone_contig, transposed) + + detached = transposed.detach() + self.assertFalse(clone.is_contiguous()) + check_nt_equality(detached, transposed) + + def test_permute(self, device): + nt = random_nt_from_dims( + [2, None, 3, 5], device, torch.float32, layout=torch.jagged + ) + nt_shape = nt.shape + nt_inner_shape = nt.values().shape + with self.assertRaisesRegex( + ValueError, + r"permute\(\): number of dimensions in the tensor input \(4\) " + + r"does not match the length of the desired ordering of dimensions \(3\).", + ): + nt.permute(0, 2, 1) + with self.assertRaisesRegex( + ValueError, r"permute\(\): duplicate dims are not allowed." + ): + nt.permute(0, 2, -2, 3) + with self.assertRaisesRegex( + ValueError, "Permute is not supported on the batch dimension for jagged NT" + ): + nt.permute(1, 0, 2, 3) + nt_permute = nt.permute(0, 2, 1, -1) + self.assertEqual( + nt_permute.shape, (nt_shape[0], nt_shape[2], nt_shape[1], nt_shape[3]) + ) + self.assertEqual( + nt_permute.values().shape, + (nt_inner_shape[1], nt_inner_shape[0], nt_inner_shape[2]), + ) + self.assertEqual(nt_permute._ragged_idx, 2) + self.assertEqual(nt_permute.permute(0, 2, 1, 3), nt) + + def test_to_dtype(self, device): + nt = random_nt_from_dims( + [2, None, 3], device, torch.float32, layout=torch.jagged + ) + nt_after = nt.to(torch.float64) + self.assertEqual(torch.float32, nt.dtype) + self.assertEqual(torch.float64, nt_after.dtype) + self.assertEqual(torch.float64, nt_after.values().dtype) + self.assertEqual(torch.int64, nt_after.offsets().dtype) + + noncontiguous_nt = nt.transpose(1, 2) + noncontiguous_nt_after = noncontiguous_nt.to(torch.bfloat16) + self.assertEqual(torch.bfloat16, noncontiguous_nt_after.dtype) + self.assertEqual(torch.bfloat16, noncontiguous_nt_after.values().dtype) + self.assertEqual(torch.int64, noncontiguous_nt_after.offsets().dtype) + + def test_to_copy(self, device): + nt = torch.nested.nested_tensor( + [ + torch.randn( + i + 2, 3, 4, requires_grad=True, dtype=torch.float64, device=device + ) + for i in range(3) + ], + layout=torch.jagged, + ) + + nt_copy_dtype = torch.ops.aten._to_copy(nt, dtype=torch.float16) + self.assertEqual(torch.float16, nt_copy_dtype.dtype) + + nt_t = nt.transpose(1, 2) + nt_t_copy_dtype = torch.ops.aten._to_copy(nt_t, dtype=torch.float16) + self.assertEqual(torch.float16, nt_t_copy_dtype.dtype) + + def test_copy_(self, device): + offsets = torch.tensor([0, 2, 4], device=device) + a = torch.nested.nested_tensor_from_jagged( + torch.zeros(4, 3, device=device), offsets + ) + b = torch.nested.nested_tensor_from_jagged( + torch.ones(4, 3, device=device), offsets + ) + a.copy_(b) + torch._dynamo.disable(self.assertEqual)(a, b) + + offsets_2 = torch.tensor([0, 2, 4], device=device) + c = torch.nested.nested_tensor_from_jagged( + torch.ones(4, 3, device=device), offsets_2 + ) + # should work even though the nested ints are different due to unbound-based copy + a.copy_(c) + + # fail when tensors have different sizes + a = a.transpose(1, 2) + with self.assertRaisesRegex( + RuntimeError, + "expected compatible input and src shapes, but got", + ): + a.copy_(b) + + # This can't happen in the opinfo tests due to subprocess creation + @unittest.skipIf( + TEST_WITH_ROCM, + "In ROCm, kernel asserts are disabled due to performance overhead", + ) + def test_index_put_error(self, device): + import subprocess + + with self.subTest(): + r = subprocess.call( + [ + sys.executable, + "-c", + """\ +import torch +offsets = torch.tensor([0, 2, 5, 7], device='cuda') +lengths = torch.tensor([2, 2, 2], device='cuda') +indices = [ + torch.tensor([0, 1, 2], device='cuda'), + torch.tensor([0, 2, 1], device='cuda'), + torch.tensor([0, 0, 0], device='cuda'), +] +a = torch.nested.nested_tensor_from_jagged( + torch.zeros(7, 3, device='cuda'), offsets, lengths +) +a[indices] = 1.0 +torch.cuda.synchronize() +""", + ] + ) + self.assertTrue(r != 0) + + @skipIfTorchDynamo("Dynamo doesn't know how to trace prof.events()") + def test_profiler_sequence_nr(self): + with torch.profiler.profile() as prof: + values = torch.randn(4, 6, requires_grad=True) + offsets = torch.tensor([0, 2, 4]) + values = values * 2 + l = torch.nn.Linear(6, 8) + nt = torch.nested.nested_tensor_from_jagged(values, offsets) + + nt = l(nt) + val = nt.values() + + loss = val.sum() + loss.backward() + + fwd_seq_nrs = [] + for evt in prof.events(): + if ( + "linear" in evt.name.lower() + and "backward" not in evt.name.lower() + and evt.sequence_nr != -1 + ): + fwd_seq_nrs.append(evt.sequence_nr) + + bwd_seq_nrs = [] + for evt in prof.events(): + if ( + "linear" in evt.name.lower() + and "backward" in evt.name.lower() + and "evaluate_function" not in evt.name.lower() + and evt.sequence_nr != -1 + ): + bwd_seq_nrs.append(evt.sequence_nr) + + # There should only be one such event with a sequence number: + # the PythonTLSSnapshot event - but, note that it's not terrible if + # we end up with multiple events with the same sequence number - so we + # could relax this check if it becomes inconvenient to maintain this + # property. + self.assertEqual(len(fwd_seq_nrs), 1) + self.assertEqual(len(bwd_seq_nrs), 1) + self.assertEqual(fwd_seq_nrs[0], bwd_seq_nrs[0]) + + def test_is_same_size(self, device): + def get_3_tensors(): + return [ + torch.randn( + i + 2, 3, 4, requires_grad=True, dtype=torch.float64, device=device + ) + for i in range(3) + ] + + nt1, offsets1 = jagged_from_list(get_3_tensors(), None) + nt2, offsets1 = jagged_from_list(get_3_tensors(), offsets1) + + nt3, offsets2 = jagged_from_list(get_3_tensors(), None) + nt4, offsets2 = jagged_from_list(get_3_tensors(), offsets2) + + def check_size(nt1, nt2, nt3, nt4): + self.assertTrue(torch.ops.aten.is_same_size(nt1, nt2)) + self.assertTrue(torch.ops.aten.is_same_size(nt3, nt4)) + self.assertFalse(torch.ops.aten.is_same_size(nt1, nt3)) + + check_size(nt1, nt2, nt3, nt4) + + nt1_t, nt2_t, nt3_t, nt4_t = (x.transpose(1, 2) for x in (nt1, nt2, nt3, nt4)) + check_size(nt1_t, nt2_t, nt3_t, nt4_t) + + @skipIfTorchDynamo("compiles internally") + @unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile") + @skipCUDAIf(not SM70OrLater, "GPU capability is < SM70") + def test_specialize_dynamic_shape(self, device): + values = torch.randn((18, 16), device=device) + offsets = torch.tensor([0, 2, 3, 6, 15, 18], device=device) + like_values = torch.randn_like(values) + + # this marks values as dynamic + nt = torch.nested.nested_tensor_from_jagged(values, offsets) + + def fn(values, same_size): + # here, the dynamic shape is specialized by same_size's shape + # https://github.com/pytorch/pytorch/issues/127097 + # make sure this doesn't error out in torch.compile + return values + same_size + + self.assertEqual( + fn(values, like_values), + torch.compile(fn)(values, like_values), + ) + + @skipIfTorchDynamo("compiles internally") + @unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile") + @skipCUDAIf(not SM70OrLater, "GPU capability is < SM70") + def test_specialize_dynamic_shape_recompile(self, device): + def generate_inp(total_len): + values = torch.randn((total_len, 16), device=device) + offsets = torch.tensor([0, 2, 3, 6, 15, total_len], device=device) + like_values = torch.randn_like(values) + return values, offsets, like_values + + def check_results(ref_fn, res_fn, args): + values, offsets, like_values = args + # this may add dynamic shape markings + # goal of this test is to make sure that whatever markings are there, + # we eventually stop recompiling as shape changes. + nt = torch.nested.nested_tensor_from_jagged(values, offsets) + + self.assertEqual(ref_fn(values, like_values), res_fn(values, like_values)) + + def fn(values, same_size): + return values + same_size + + compile_counter = torch._dynamo.testing.CompileCounter() + + compiled_fn = torch.compile(fn, backend=compile_counter, fullgraph=True) + check_results(fn, compiled_fn, generate_inp(18)) + self.assertEqual(compile_counter.frame_count, 1) + + check_results(fn, compiled_fn, generate_inp(19)) + # we'll probably recompile here with dynamic shapes - it's okay if not though. + frame_count_2 = compile_counter.frame_count + self.assertIn(frame_count_2, [1, 2]) + + # make sure that by now we've already compiled with dynamic shapes, so additional + # shapes should not trigger additional recompiles. + check_results(fn, compiled_fn, generate_inp(20)) + self.assertEqual(compile_counter.frame_count, frame_count_2) + + # Note 1: Math fallback doesn't work with bfloat16 on CUDA + # Note 2: ROCm doesn't support flash attention or mem_efficient attention for NT + @unittest.skipIf( + TEST_WITH_ROCM, + "ROCm doesn't support flash attention or mem_efficient attention for NT", + ) + @tf32_on_and_off(0.005) + @dtypes( + *( + [torch.float16, torch.bfloat16, torch.float32] + if SM80OrLater + else [torch.float16, torch.float32] + ) + ) + def test_sdpa(self, device, dtype): + batch_size = 1 + emb_dims = 128 + n_heads = 8 + head_dims = emb_dims // n_heads + + sen1 = torch.randn(11, emb_dims, dtype=dtype, device=device) + sen2 = torch.randn(13, emb_dims, dtype=dtype, device=device) + + query = torch.nn.Linear( + emb_dims, emb_dims, bias=False, device=device, dtype=dtype + ) + key = torch.nn.Linear( + emb_dims, emb_dims, bias=False, device=device, dtype=dtype + ) + value = torch.nn.Linear( + emb_dims, emb_dims, bias=False, device=device, dtype=dtype + ) + + # Simplest case: 1 sentence, no batching + x_d1 = sen1.unsqueeze(0) + x_nt = torch.nested.as_nested_tensor([sen1], layout=torch.jagged) + + # See note below for why we detach here. + q_d1 = ( + query(x_d1) + .view(batch_size, -1, n_heads, head_dims) + .detach() + .requires_grad_(True) + ) + q_d1_t = q_d1.transpose(1, 2) + k_d1 = ( + key(x_d1) + .view(batch_size, -1, n_heads, head_dims) + .detach() + .requires_grad_(True) + ) + k_d1_t = k_d1.transpose(1, 2) + v_d1 = ( + value(x_d1) + .view(batch_size, -1, n_heads, head_dims) + .detach() + .requires_grad_(True) + ) + v_d1_t = v_d1.transpose(1, 2) + + q_nt = ( + query(x_nt) + .view(*x_nt.size()[0:2], n_heads, head_dims) + .detach() + .requires_grad_(True) + ) + q_nt_t = q_nt.transpose(1, 2) + k_nt = ( + key(x_nt) + .view(*x_nt.size()[0:2], n_heads, head_dims) + .detach() + .requires_grad_(True) + ) + k_nt_t = k_nt.transpose(1, 2) + v_nt = ( + value(x_nt) + .view(*x_nt.size()[0:2], n_heads, head_dims) + .detach() + .requires_grad_(True) + ) + v_nt_t = v_nt.transpose(1, 2) + + # High Precision Math Reference + q_d1_f32 = q_d1.to(torch.float32) + k_d1_f32 = k_d1.to(torch.float32) + v_d1_f32 = v_d1.to(torch.float32) + q_d1_f32_t = q_d1_f32.transpose(1, 2) + k_d1_f32_t = k_d1_f32.transpose(1, 2) + v_d1_f32_t = v_d1_f32.transpose(1, 2) + out_ref = torch.ops.aten._scaled_dot_product_attention_math( + q_d1_f32_t, k_d1_f32_t, v_d1_f32_t + )[0] + grads_ref = torch.autograd.grad(out_ref.sum(), (q_d1_f32, k_d1_f32, v_d1_f32)) + + # Low Precision Math Reference + out_lp_ref = torch.ops.aten._scaled_dot_product_attention_math( + q_d1_t, k_d1_t, v_d1_t + )[0] + grads_lp_ref = torch.autograd.grad(out_lp_ref.sum(), (q_d1, k_d1, v_d1)) + + # Compute tolerances + output_ref_atol, output_ref_rtol = get_tolerances(out_ref, out_lp_ref) + # fudge factor of 1.7 for smaller GPUs e.g., A2, A16 + grad_q_ref_atol, grad_q_ref_rtol = get_tolerances( + grads_ref[0], grads_lp_ref[0], 1.7 + ) + grad_k_ref_atol, grad_k_ref_rtol = get_tolerances(grads_ref[1], grads_lp_ref[1]) + grad_v_ref_atol, grad_v_ref_rtol = get_tolerances(grads_ref[2], grads_lp_ref[2]) + grad_atols = [grad_q_ref_atol, grad_k_ref_atol, grad_v_ref_atol] + grad_rtols = [grad_q_ref_rtol, grad_k_ref_rtol, grad_v_ref_rtol] + + attn_d1 = torch.nn.functional.scaled_dot_product_attention( + q_d1_t, k_d1_t, v_d1_t + ).transpose(1, 2) + attn_nt = torch.nn.functional.scaled_dot_product_attention( + q_nt_t, k_nt_t, v_nt_t + ).transpose(1, 2) + + self.assertEqual( + attn_d1, + attn_nt.unbind()[0].unsqueeze(0), + atol=output_ref_atol, + rtol=output_ref_rtol, + ) + + # Simple case: 2 sentences, no extra params + x_d2 = sen2.unsqueeze(0) + x_nt = torch.nested.as_nested_tensor([sen1, sen2], layout=torch.jagged) + + # NB: we make sure the leaf tensor we compute gradients for is the view-ed tensor before + # it is transposed. This is because today we cannot backward through view or unbind a # transposed tensor. q_d2 = ( query(x_d2) @@ -534,203 +6872,1114 @@ def _test_sdpa(self, device, dtype): .detach() .requires_grad_(True) ) - q_d2_t = q_d2.transpose(1, 2) - k_d2 = ( - key(x_d2) - .view(batch_size, -1, n_heads, head_dims) - .detach() - .requires_grad_(True) + q_d2_t = q_d2.transpose(1, 2) + k_d2 = ( + key(x_d2) + .view(batch_size, -1, n_heads, head_dims) + .detach() + .requires_grad_(True) + ) + k_d2_t = k_d2.transpose(1, 2) + v_d2 = ( + value(x_d2) + .view(batch_size, -1, n_heads, head_dims) + .detach() + .requires_grad_(True) + ) + v_d2_t = v_d2.transpose(1, 2) + + q_nt = ( + query(x_nt) + .view(*x_nt.size()[0:2], n_heads, head_dims) + .detach() + .requires_grad_(True) + ) + q_nt_t = q_nt.transpose(1, 2) + k_nt = ( + key(x_nt) + .view(*x_nt.size()[0:2], n_heads, head_dims) + .detach() + .requires_grad_(True) + ) + k_nt_t = k_nt.transpose(1, 2) + v_nt = ( + value(x_nt) + .view(*x_nt.size()[0:2], n_heads, head_dims) + .detach() + .requires_grad_(True) + ) + v_nt_t = v_nt.transpose(1, 2) + + attn_d2 = torch.nn.functional.scaled_dot_product_attention( + q_d2_t, k_d2_t, v_d2_t + ).transpose(1, 2) + d1_grads = torch.autograd.grad(attn_d1.sum(), (q_d1, k_d1, v_d1)) + d2_grads = torch.autograd.grad(attn_d2.sum(), (q_d2, k_d2, v_d2)) + + # Simple case 3: batch_size = 1, seq_len = 1 + q_3 = torch.randn(1, 8, 16, dtype=dtype, device=device) + q_nt_3 = torch.nested.as_nested_tensor([q_3], layout=torch.jagged) + q_nt_3 = q_nt_3.transpose(1, 2) + attn_out = torch.nn.functional.scaled_dot_product_attention( + q_nt_3, q_nt_3, q_nt_3 + ) + self.assertEqual(attn_out.shape, q_nt_3.shape) + + @parametrize("skip_backward", [True, False]) + def check_forward_backward(skip_backward=False): + if not skip_backward: + attn_nt = torch.nn.functional.scaled_dot_product_attention( + q_nt_t, k_nt_t, v_nt_t + ).transpose(1, 2) + else: + x_nt.requires_grad = False + q_nt.requires_grad = False + k_nt.requires_grad = False + v_nt.requires_grad = False + tq = q_nt_t.detach() + tk = k_nt_t.detach() + tv = v_nt_t.detach() + with torch.no_grad(): + attn_nt = torch.nn.functional.scaled_dot_product_attention( + tq, tk, tv + ).transpose(1, 2) + + attn_nts = attn_nt.unbind() + self.assertEqual( + attn_d1, + attn_nts[0].unsqueeze(0), + atol=output_ref_atol, + rtol=output_ref_rtol, + ) + self.assertEqual( + attn_d2, + attn_nts[1].unsqueeze(0), + atol=output_ref_atol, + rtol=output_ref_rtol, + ) + + if not skip_backward: + nt_grads = torch.autograd.grad( + attn_nt.values().sum(), (q_nt, k_nt, v_nt) + ) + for nt_grad, d1_grad, d2_grad, grad_atol, grad_rtol in zip( + nt_grads, d1_grads, d2_grads, grad_atols, grad_rtols + ): + unbound_nt_grads = nt_grad.unbind() + self.assertEqual( + d1_grad, + unbound_nt_grads[0].unsqueeze(0), + atol=grad_atol, + rtol=grad_rtol, + ) + self.assertEqual( + d2_grad, + unbound_nt_grads[1].unsqueeze(0), + atol=grad_atol, + rtol=grad_rtol, + ) + + # Default + check_forward_backward() + + # Test dispatcher works by calling only mem-effn and math (as they are safe for all devices) + with torch.backends.cuda.sdp_kernel( + enable_flash=False, enable_mem_efficient=True, enable_math=True + ): + check_forward_backward() + + # Test math fallback + with torch.backends.cuda.sdp_kernel( + enable_flash=False, enable_mem_efficient=False, enable_math=True + ): + # Math fallback doesn't work with bfloat16 on CUDA because + # "group_gemm_dispatch" not implemented for 'BFloat16' + if not (str(device).startswith("cuda") and dtype == torch.bfloat16): + check_forward_backward() + check_cudnn = os.getenv("TORCH_CUDNN_SDPA_NESTED_TENSOR_ENABLED", "0") == "1" + if ( + "cuda" in str(device) + and check_cudnn + and (dtype == torch.float16 or dtype == torch.bfloat16) + ): + with torch.nn.attention.sdpa_kernel( + torch.nn.attention.SDPBackend.CUDNN_ATTENTION + ): + check_forward_backward() + + @skipIfTorchDynamo("SDPA test compiles internally") + @unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile") + @skipCUDAIf(not SM70OrLater, "GPU capability is < SM70") + # Guarding with sqrt() doesn't work on ROCm? + @skipCUDAIfRocm + @onlyOn(["cuda", "xpu"]) + @dtypes( + *( + [torch.float16, torch.bfloat16, torch.float32] + if SM80OrLater + else [torch.float16, torch.float32] + ) + ) + def test_sdpa_compile(self, device, dtype): + batch_size = 1 + emb_dims = 1024 + n_heads = 8 + head_dims = emb_dims // n_heads + + sen1 = torch.randn(11, emb_dims, dtype=dtype, device=device) + sen2 = torch.randn(13, emb_dims, dtype=dtype, device=device) + + query = torch.nn.Linear( + emb_dims, emb_dims, bias=False, device=device, dtype=dtype + ) + key = torch.nn.Linear( + emb_dims, emb_dims, bias=False, device=device, dtype=dtype + ) + value = torch.nn.Linear( + emb_dims, emb_dims, bias=False, device=device, dtype=dtype + ) + + # Simplest case: 1 sentence, no batching + x_d1 = sen1.unsqueeze(0) + x_d2 = sen2.unsqueeze(0) + x_nt = torch.nested.as_nested_tensor([sen1, sen2], layout=torch.jagged) + + q_d1 = query(x_d1).view(batch_size, -1, n_heads, head_dims).transpose(1, 2) + k_d1 = key(x_d1).view(batch_size, -1, n_heads, head_dims).transpose(1, 2) + v_d1 = value(x_d1).view(batch_size, -1, n_heads, head_dims).transpose(1, 2) + q_d2 = query(x_d2).view(batch_size, -1, n_heads, head_dims).transpose(1, 2) + k_d2 = key(x_d2).view(batch_size, -1, n_heads, head_dims).transpose(1, 2) + v_d2 = value(x_d2).view(batch_size, -1, n_heads, head_dims).transpose(1, 2) + + q_nt = ( + query(x_nt) + .view(*x_nt.size()[0:2], n_heads, head_dims) + .detach() + .transpose(1, 2) + ) + k_nt = ( + key(x_nt) + .view(*x_nt.size()[0:2], n_heads, head_dims) + .detach() + .transpose(1, 2) + ) + v_nt = ( + value(x_nt) + .view(*x_nt.size()[0:2], n_heads, head_dims) + .detach() + .transpose(1, 2) + ) + + # High Precision Math Reference + q_d1_f32 = q_d1.to(torch.float32) + k_d1_f32 = k_d1.to(torch.float32) + v_d1_f32 = v_d1.to(torch.float32) + out_ref = torch.ops.aten._scaled_dot_product_attention_math( + q_d1_f32, k_d1_f32, v_d1_f32 + )[0] + # Low Precision Math Reference + out_lp_ref = torch.ops.aten._scaled_dot_product_attention_math( + q_d1, k_d1, v_d1 + )[0] + output_ref_atol, output_ref_rtol = get_tolerances( + out_ref, out_lp_ref, fudge_factor=2 + ) + + attn_d1 = torch.nn.functional.scaled_dot_product_attention( + q_d1, k_d1, v_d1 + ).transpose(1, 2) + attn_d2 = torch.nn.functional.scaled_dot_product_attention( + q_d2, k_d2, v_d2 + ).transpose(1, 2) + + compiled_sdpa = torch.compile(torch.nn.functional.scaled_dot_product_attention) + attn_nt = compiled_sdpa(q_nt, k_nt, v_nt).transpose(1, 2) + + attn_nts = attn_nt.unbind() + self.assertEqual( + attn_d1, + attn_nts[0].unsqueeze(0), + atol=output_ref_atol, + rtol=output_ref_rtol, + ) + self.assertEqual( + attn_d2, + attn_nts[1].unsqueeze(0), + atol=output_ref_atol, + rtol=output_ref_rtol, + ) + + @dtypes(torch.float32, torch.double, torch.half) + def test_sdpa_with_constant_sequence_length(self, device, dtype): + # shape (B, P*, S, D) + # B: batch size + # P*: ragged number of prompts + # S: (constant) sequence length + # D: embedding size + query = random_nt_from_dims( + [4, None, 8, 10], + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=True, + ) + key = random_nt_from_similar(query) + value = random_nt_from_similar(query) + output = F.scaled_dot_product_attention(query, key, value) + self.assertTrue(isinstance(output, NestedTensor)) + output.values().sum().backward() + + query_dense = query.detach().clone().requires_grad_(True) + # should be equivalent to just running the buffers through + output_dense = F.scaled_dot_product_attention( + query_dense.values(), key.values(), value.values() + ) + torch._dynamo.disable(self.assertEqual)(output._values, output_dense) + output_dense.sum().backward() + torch._dynamo.disable(self.assertEqual)(query.grad, query_dense.grad) + + @onlyOn(["cuda", "xpu"]) + @unittest.skipIf( + not PLATFORM_SUPPORTS_FUSED_ATTENTION, + "Platform doesn't support flash or mem-efficient attention", + ) + @dtypes( + *( + [torch.float16, torch.bfloat16, torch.float32] + if SM80OrLater + else [torch.float16, torch.float32] + ) + ) + def test_sdpa_with_packed_in_proj(self, device, dtype): + # shape (B, *, D) + input_packed = random_nt_from_dims( + [5, None, 10], device=device, dtype=dtype, layout=torch.jagged + ) + + # Do input projection. + num_heads = 2 + # should be multiple of 4 for efficient kernels (e.g. flash / mem-efficient) + head_dim = 8 + qkv_linear = torch.nn.Linear(10, num_heads * head_dim * 3).to( + device=device, dtype=dtype + ) + + def in_proj(input_packed, qkv_linear=qkv_linear): + qkv_post_proj = qkv_linear(input_packed) + # these are non-contiguous to trigger _is_safe_to_get_storage_as_tensor() + q, k, v = qkv_post_proj.chunk(3, dim=-1) + q = q.unflatten(-1, [num_heads, head_dim]).transpose(-2, -3) + k = k.unflatten(-1, [num_heads, head_dim]).transpose(-2, -3) + v = v.unflatten(-1, [num_heads, head_dim]).transpose(-2, -3) + return q, k, v + + q, k, v = in_proj(input_packed) + output = F.scaled_dot_product_attention(q, k, v, attn_mask=None) + + # compare to individually running unbound components through + for in_component, out_component in zip( + input_packed.unbind(), output.transpose(-2, -3).unbind() + ): + q, k, v = in_proj(in_component) + out = F.scaled_dot_product_attention(q, k, v).transpose(-2, -3) + + # Low Precision Math Reference + out_lp_ref = torch.ops.aten._scaled_dot_product_attention_math(q, k, v)[ + 0 + ].transpose(-2, -3) + output_ref_atol, output_ref_rtol = get_tolerances( + out, out_lp_ref, fudge_factor=2 + ) + + self.assertEqual( + out, out_component, atol=output_ref_atol, rtol=output_ref_rtol + ) + + @skipIfTorchDynamo("SDPA test compiles internally") + @unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile") + @skipCUDAIf(not SM70OrLater, "GPU capability is < SM70") + # mha_varlen_fwd not supported on ROCm + @skipCUDAIfRocm + @onlyOn(["cuda", "xpu"]) + @dtypes( + *( + [torch.float16, torch.bfloat16, torch.float32] + if SM80OrLater + else [torch.float16, torch.float32] + ) + ) + def test_sdpa_backwards(self, device, dtype): + values = torch.randn(9, 3, 256, requires_grad=True, device=device, dtype=dtype) + offsets = torch.tensor([0, 1, 3, 5, 9], device=device, dtype=torch.int64) + + @torch.compile + def f(values, offsets): + nt = convert_jagged_to_nested_tensor(values, offsets, max_length=4) + nt = nt.transpose(-2, -3) + # purposefully graph break to trigger view replay for subclass view input + torch.tensor(1).item() + output = F.scaled_dot_product_attention(nt, nt, nt).transpose(-2, -3) + return convert_nt_to_jagged(output) + + output = f(values, offsets) + output.sum().backward() + self.assertEqual(values.grad, torch.ones_like(values)) + + @unittest.skipIf( + not PLATFORM_SUPPORTS_FUSED_ATTENTION, + "Platform doesn't support flash or mem-efficient attention", + ) + @skipCUDAIf(not SM70OrLater, "GPU capability is < SM70") + @skipCUDAIfRocm + @onlyOn(["cuda", "xpu"]) + @skipIfTorchDynamo() + @unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile") + def test_sdpa_autocast(self, device): + def fn_nt(values32, values16, offsets): + nt32 = convert_jagged_to_nested_tensor(values32, offsets, max_length=16) + nt16 = convert_jagged_to_nested_tensor(values16, offsets, max_length=16) + nt32 = nt32.transpose(1, 2) + nt16 = nt16.transpose(1, 2) + return F.scaled_dot_product_attention(nt32, nt16, nt32) + + def fn_dense(x32, x16): + x32 = x32.view(8, 16, 4, 16).transpose(1, 2) + x16 = x16.view(8, 16, 4, 16).transpose(1, 2) + return F.scaled_dot_product_attention(x32, x16, x32) + + values32 = torch.randn((8 * 16, 4, 16), device=device, dtype=torch.float32) + values16 = torch.randn((8 * 16, 4, 16), device=device, dtype=torch.float16) + offsets = torch.arange(0, 8 * 16 + 1, 16, device=device, dtype=torch.int32) + + x32 = values32.clone() + x16 = values16.clone() + + with torch.autocast(device_type="cuda", dtype=torch.float16): + out_dense_eager = fn_dense(x32, x16) + out_dense_compiled = torch.compile(fn_dense)(x32, x16) + out_nt_eager = fn_nt(values32, values16, offsets) + out_nt_compiled = torch.compile(fn_nt)(values32, values16, offsets) + + self.assertEqual(out_dense_eager, out_dense_compiled) + self.assertEqual( + out_dense_eager.transpose(1, 2), + out_nt_eager.values().transpose(0, 1).view(8, 16, 4, 16), + ) + self.assertEqual( + out_dense_eager.transpose(1, 2), + out_nt_compiled.values().transpose(0, 1).view(8, 16, 4, 16), ) - k_d2_t = k_d2.transpose(1, 2) - v_d2 = ( - value(x_d2) - .view(batch_size, -1, n_heads, head_dims) - .detach() - .requires_grad_(True) + + def get_values(): + return tuple( + x.detach().clone().requires_grad_(True) for x in (values32, values16) + ) + + v32_dense_eager, v16_dense_eager = get_values() + v32_dense_compile, v16_dense_compile = get_values() + v32_nt_eager, v16_nt_eager = get_values() + v32_nt_compile, v16_nt_compile = get_values() + + with torch.autocast(device_type="cuda", dtype=torch.float16): + loss_dense_eager = fn_dense(v32_dense_eager, v16_dense_eager).sum() + loss_dense_compile = torch.compile(fn_dense)( + v32_dense_compile, v16_dense_compile + ).sum() + loss_nt_eager = fn_nt(v32_nt_eager, v16_nt_eager, offsets).values().sum() + loss_nt_compile = ( + torch.compile(fn_nt)(v32_nt_compile, v16_nt_compile, offsets) + .values() + .sum() + ) + + loss_dense_eager.backward() + loss_dense_compile.backward() + loss_nt_eager.backward() + loss_nt_compile.backward() + + self.assertEqual(v32_dense_eager.grad, v32_dense_compile.grad) + self.assertEqual(v32_dense_eager.grad, v32_nt_eager.grad, atol=1e-4, rtol=1e-4) + self.assertEqual( + v32_dense_eager.grad, v32_nt_compile.grad, atol=1e-4, rtol=1e-4 ) - v_d2_t = v_d2.transpose(1, 2) - q_nt = ( - query(x_nt) - .view(*x_nt.size()[0:2], n_heads, head_dims) - .detach() - .requires_grad_(True) + self.assertEqual(v16_dense_eager.grad, v16_dense_compile.grad) + self.assertEqual(v16_dense_eager.grad, v16_nt_eager.grad, atol=1e-5, rtol=5e-3) + self.assertEqual( + v16_dense_eager.grad, v16_nt_compile.grad, atol=1e-5, rtol=5e-3 ) - q_nt_t = q_nt.transpose(1, 2) - k_nt = ( - key(x_nt) - .view(*x_nt.size()[0:2], n_heads, head_dims) - .detach() - .requires_grad_(True) + + @unittest.skipIf( + not PLATFORM_SUPPORTS_FUSED_ATTENTION, + "Platform doesn't support flash or mem-efficient attention", + ) + @skipCUDAIf(not SM70OrLater, "GPU capability is < SM70") + @skipCUDAIfRocm + @onlyOn(["cuda", "xpu"]) + @skipIfTorchDynamo() + def test_sdpa_flop_counter(self, device): + from torch.utils.flop_counter import FlopCounterMode + + def get_flops(nt): + flop_counter = FlopCounterMode(display=False) + with flop_counter: + ret = torch.nn.functional.scaled_dot_product_attention(nt, nt, nt) + ret.values().sum().backward() + return flop_counter.get_total_flops() + + values = torch.randn( + (8 * 16, 4, 16), requires_grad=True, device=device, dtype=torch.float16 ) - k_nt_t = k_nt.transpose(1, 2) - v_nt = ( - value(x_nt) - .view(*x_nt.size()[0:2], n_heads, head_dims) - .detach() - .requires_grad_(True) + offsets = torch.arange(0, 8 * 16 + 1, 16, device=device, dtype=torch.int32) + nt = convert_jagged_to_nested_tensor(values, offsets, max_length=16).transpose( + 1, 2 ) - v_nt_t = v_nt.transpose(1, 2) - attn_d2 = torch.nn.functional.scaled_dot_product_attention( - q_d2_t, k_d2_t, v_d2_t + values_meta = torch.randn( + (8 * 16, 4, 16), requires_grad=True, device="meta", dtype=torch.float16 + ) + offsets_meta = torch.arange(0, 8 * 16 + 1, 16, device="meta", dtype=torch.int32) + nt_meta = convert_jagged_to_nested_tensor( + values_meta, offsets_meta, max_length=16 ).transpose(1, 2) - d1_grads = torch.autograd.grad(attn_d1.sum(), (q_d1, k_d1, v_d1)) - d2_grads = torch.autograd.grad(attn_d2.sum(), (q_d2, k_d2, v_d2)) - # Simple case 3: batch_size = 1, seq_len = 1 - q_3 = torch.randn(1, 8, 16, dtype=dtype, device=device) - q_nt_3 = torch.nested.as_nested_tensor([q_3], layout=torch.jagged) - q_nt_3 = q_nt_3.transpose(1, 2) - attn_out = torch.nn.functional.scaled_dot_product_attention( - q_nt_3, q_nt_3, q_nt_3 + self.assertEqual(get_flops(nt), get_flops(nt_meta)) + + @skipIfTorchDynamo() + def test_nested_tensor_activation_checkpoint(self, device): + values = torch.randn( + 9, 3, 256, requires_grad=True, device=device, dtype=torch.float32 ) - self.assertEqual(attn_out.shape, q_nt_3.shape) + lengths = torch.tensor([1, 2, 3, 3], device=device, dtype=torch.int64) + offsets = F.pad(lengths, pad=(1, 0)).cumsum(dim=0) - def check_forward_backward(): - attn_nt = torch.nn.functional.scaled_dot_product_attention( - q_nt_t, k_nt_t, v_nt_t - ).transpose(1, 2) + def fn(values, offsets): + nt = convert_jagged_to_nested_tensor(values, offsets, max_length=4) + return convert_nt_to_jagged(nt).sum() - attn_nts = attn_nt.unbind() - self.assertEqual( - attn_d1, - attn_nts[0].unsqueeze(0), - atol=output_ref_atol, - rtol=output_ref_rtol, + checkpoint(fn, values, offsets, use_reentrant=False).backward() + self.assertIsNotNone(values.grad) + + context_fn = partial( + create_selective_checkpoint_contexts, [torch.ops.aten.cumsum.default] + ) + + values.grad = None + + def fn(values, lengths): + offsets = F.pad(lengths, pad=(1, 0)).cumsum(dim=0) + nt = convert_jagged_to_nested_tensor(values, offsets, max_length=4) + return convert_nt_to_jagged(nt).sum() + + checkpoint( + fn, values, lengths, use_reentrant=False, context_fn=context_fn + ).backward() + self.assertIsNotNone(values.grad) + + # Internally-defined NT use cases are lifted to here for maximum test realism. + # TODO: Remove these when ViewNestedFromBuffer, etc. are deprecated. + @skipCUDAIfRocm # not needed + @skipIfTorchDynamo("compiles internally") + @unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile") + @skipCUDAIf(not SM70OrLater, "GPU capability is < SM70") + @parametrize("use_legacy_api", [True, False]) + @skipCPUIf(True, "SPDA Math NT fallback causes failure: see issue #133644") + @unittest.skipIf( + "RelWithAssert" in torch.__config__.show(), + "failing in debug build, see https://github.com/pytorch/pytorch/pull/165158 for context", + ) + def test_dummy_mha_with_nt(self, device, use_legacy_api): + bs = 3 + d1 = 2 + d2 = 4 + d3 = 16 + n_heads = 2 + d_head = d3 // n_heads + max_length_1 = 10 + max_length_2 = 20 + torch.manual_seed(0) + + class mha(torch.nn.Module): + def __init__(self, use_legacy_api) -> None: + super().__init__() + torch.manual_seed(0) + self.linear = torch.nn.Linear(d2, d3, device=device) + self.use_legacy_api = use_legacy_api + + def forward(self, query, value, offsets): + value = self.linear(value) + if self.use_legacy_api: + key = convert_jagged_to_nested_tensor_legacy( + value, offsets, max_length_1 + ) + value = convert_jagged_to_nested_tensor_legacy( + value, offsets, max_length_2 + ) + query = convert_dense_to_nested_tensor_legacy(query) + else: + key = convert_jagged_to_nested_tensor(value, offsets, max_length_1) + value = convert_jagged_to_nested_tensor( + value, offsets, max_length_2 + ) + query = convert_dense_to_nested_tensor(query) + q = query.view(bs, -1, n_heads, d_head).transpose(1, 2) + k = key.view(bs, -1, n_heads, d_head).transpose(1, 2) + v = value.view(bs, -1, n_heads, d_head).transpose(1, 2) + + with torch.nn.attention.sdpa_kernel( + [ + torch.nn.attention.SDPBackend.FLASH_ATTENTION, + torch.nn.attention.SDPBackend.EFFICIENT_ATTENTION, + ] + ): + attn_output = torch.nn.functional.scaled_dot_product_attention( + q, + k, + v, + attn_mask=None, + dropout_p=0.0, + is_causal=False, + ) + attn_output = attn_output.transpose(1, 2) + if self.use_legacy_api: + attn_output = convert_nt_to_jagged_legacy(attn_output) + else: + attn_output = convert_nt_to_jagged(attn_output) + return attn_output, key._max_seqlen, value._max_seqlen + + query = torch.rand(bs, d1, d3, device=device) + value = torch.rand(30, d2, requires_grad=True, device=device) + # total_length must > than max_length otherwise flash_attn backward will fail + offsets = torch.tensor([0, 2, 3, 30], device=device) + + m = mha(use_legacy_api) + symbolic_traced: torch.fx.GraphModule = torch.fx.symbolic_trace(m) + m = torch.compile(symbolic_traced) + attn_output, cached_key_max_seqlen, cached_value_max_seqlen = m( + query, value, offsets + ) + loss = attn_output.sum() + # Check that NT can be fx traced and torch.compile, and backward works + loss.backward() + + # Check that value.requires_grad is not lost after tracing and compiling + value_grad = value.grad # save for comparison later + self.assertIsNotNone(value_grad) + # check that max_seqlen is cached properly + self.assertEqual(cached_key_max_seqlen, max_length_1) + self.assertEqual(cached_value_max_seqlen, max_length_2) + + # check if the output is numerically equivalent with the eager mode + m_eager = mha(use_legacy_api) + + value.grad = None + attn_output_eager, _, _ = m_eager(query, value, offsets) + attn_output_eager.sum().backward() + self.assertTrue(torch.allclose(attn_output_eager, attn_output)) + self.assertTrue(torch.allclose(value_grad, value.grad)) + + # Helper function to generate random query, key, value NJTs in (B, n_heads, *, D) format. + # If noncontig_with_holes is True, the results will be non-contiguous with holes (i.e. have + # both offsets and lengths specified). + def _rand_qkv(self, device, dtype, noncontig_with_holes=False, q_and_kv_match=True): + batch_size = 8 + n_heads = 8 + D = 16 + + def _rand_nt(noncontig_with_holes=noncontig_with_holes): + sentence_lengths = [random.randint(2, 1023) for _ in range(batch_size - 1)] + total = sum(sentence_lengths) + + # shape (B, *, D_total) where D_total = n_heads * D + nt = torch.nested.nested_tensor( + [ + torch.randn(l, n_heads * D, device=device, dtype=dtype) + for l in sentence_lengths + ], + layout=torch.jagged, ) - self.assertEqual( - attn_d2, - attn_nts[1].unsqueeze(0), - atol=output_ref_atol, - rtol=output_ref_rtol, + + if noncontig_with_holes: + nt = torch.nested.nested_tensor_from_jagged( + nt._values, + nt._offsets, + # -1 to introduce holes + lengths=nt._offsets.diff() - 1, + jagged_dim=nt._ragged_idx, + min_seqlen=nt._min_seqlen, + max_seqlen=nt._max_seqlen, + ) + + return nt + + query = _rand_nt() + if q_and_kv_match: + key = torch.randn_like(query) + value = torch.randn_like(query) + else: + key = _rand_nt() + value = torch.randn_like(key) + + # shape (B, *, D_total) -> (B, n_heads, *, D) + query = ( + query.unflatten(-1, [n_heads, D]).transpose(1, 2).detach().requires_grad_() + ) + key = key.unflatten(-1, [n_heads, D]).transpose(1, 2).detach().requires_grad_() + value = ( + value.unflatten(-1, [n_heads, D]).transpose(1, 2).detach().requires_grad_() + ) + + return query, key, value + + @dtypes(torch.float32) + def test_apply_(self, device, dtype): + nt = random_nt_from_dims( + [5, None, 10], + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=True, + ) + + def f(x): + return x * 2 + + if device != "cpu": + with self.assertRaisesRegex( + TypeError, "apply_ is only implemented on CPU tensors" + ): + nt.apply_(f) + return + + before = nt._values.detach().clone() + + nt.apply_(f) + expected = f(before) + self.assertEqual(expected, nt._values) + # apply_ should swap values in-place without appending to autograd graph + self.assertIsNone(nt.grad) + self.assertIsNone(nt._values.grad_fn) + + @onlyOn(["cuda", "xpu"]) + @dtypes(torch.float64, torch.float32, torch.half) + @parametrize( + "contiguity", + ["noncontig_transposed", "noncontig_with_holes"], + name_fn=lambda c: c, + ) + def test_noncontiguous_to(self, device, dtype, contiguity): + # Dense tensors preserve non-contiguity through to() calls (i.e. strides are + # preserved). Test for the analogous behavior for NJTs: + # 1. non-contiguous transposed + # 2. non-contiguous with holes + if contiguity == "noncontig_transposed": + nt = random_nt_from_dims( + [3, None, 5, 2], + device=device, + dtype=dtype, + layout=torch.jagged, + ).transpose(-3, -2) + elif contiguity == "noncontig_with_holes": + nt = torch.nested.nested_tensor_from_jagged( + values=torch.randn(10, 3, device=device, dtype=dtype), + offsets=torch.tensor([0, 3, 7, 10], device=device, dtype=torch.int64), + # these lengths specify holes + lengths=torch.tensor([1, 2, 3], device=device, dtype=torch.int64), ) + else: + raise ValueError("invalid contiguity specified for test_noncontiguous_to()") + + # test dtype conversion + dtype_conversions = { + torch.float32: torch.half, + torch.float64: torch.float32, + torch.half: torch.float32, + } + other_dtype = dtype_conversions[dtype] + nt2 = nt.to(dtype=other_dtype) + self.assertEqual(nt2.dtype, other_dtype) + self.assertEqual(nt.is_contiguous(), nt2.is_contiguous()) + self.assertEqual(nt._values.is_contiguous(), nt2._values.is_contiguous()) + self.assertEqual(nt.shape, nt2.shape) + # expect no change for offsets / lengths + self.assertEqual(nt._offsets, nt2._offsets) + self.assertEqual(nt._lengths, nt2._lengths) + + # test device conversion + other_device = torch.device("cpu") + nt3 = nt.to(device=other_device) + self.assertEqual(nt3.device, other_device) + self.assertEqual(nt.is_contiguous(), nt3.is_contiguous()) + self.assertEqual(nt._values.is_contiguous(), nt3._values.is_contiguous()) + self.assertEqual(nt.shape, nt3.shape) + # expect device change for offsets / lengths + self.assertEqual(nt3._offsets.device, other_device) + if nt._lengths is not None: + self.assertEqual(nt3._lengths.device, other_device) + + @dtypes(torch.float32) + def test_autograd_function_with_None_grad(self, device, dtype): + class MyFunction(torch.autograd.Function): + @staticmethod + def forward(ctx, inp): + ctx.save_for_backward(inp) + out1 = inp + 1 + out2 = inp * 2 + return out1, out2 + + @staticmethod + def backward(ctx, grad_out1, grad_out2): + (inp,) = ctx.saved_tensors + return grad_out1 + grad_out2 + + f = MyFunction.apply + nt = random_nt_from_dims( + [5, None, 10], + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=True, + ) + + # Only use one of the autograd.Function outputs downstream so that the grad + # for the other output is None. We're testing that the engine can allocate + # correctly-shaped (NJT) zeros for the grad of the other output in this case. + (out1, _) = f(nt) + out1.backward(torch.ones_like(out1)) + + @dtypes(torch.float64, torch.float32, torch.half) + def test_jagged_padded_dense_conversion_kernels(self, device, dtype): + values = torch.randn(10, 5, device=device, dtype=dtype) + offsets = torch.tensor([0, 1, 3, 8, 10], device=device, dtype=torch.int64) + max_length = offsets.diff().max().item() + padding_value = 1.3 + + # convert jagged -> padded dense + padded = torch.ops.aten._jagged_to_padded_dense_forward( + values, [offsets], [max_length], padding_value + ) + + batch_size = offsets.shape[0] - 1 + expected_padded_shape = (batch_size, max_length, values.shape[-1]) + self.assertEqual(padded.shape, expected_padded_shape) + + # convert padded dense -> jagged + total_L = values.shape[0] + output_jagged = torch.ops.aten._padded_dense_to_jagged_forward( + padded, [offsets], total_L + ) + + # should be equivalent to the original values + self.assertEqual(values, output_jagged) + + # success case: truncate to max length as needed + trunc_max_length = max_length - 1 + trunc_padded = torch.ops.aten._jagged_to_padded_dense_forward( + values, [offsets], [trunc_max_length], padding_value + ) + self.assertEqual(padded[:, :trunc_max_length, :], trunc_padded) - nt_grads = torch.autograd.grad(attn_nt.values().sum(), (q_nt, k_nt, v_nt)) - for nt_grad, d1_grad, d2_grad, grad_atol, grad_rtol in zip( - nt_grads, d1_grads, d2_grads, grad_atols, grad_rtols + # specific to CPU impls + if device == "cpu": + # error case: multiple offsets on cpu since CPU kernels don't support more now + with self.assertRaisesRegex( + RuntimeError, "only a single jagged dim is supported" ): - unbound_nt_grads = nt_grad.unbind() - self.assertEqual( - d1_grad, - unbound_nt_grads[0].unsqueeze(0), - atol=grad_atol, - rtol=grad_rtol, + torch.ops.aten._jagged_to_padded_dense_forward( + values, [offsets, offsets], [max_length, max_length], padding_value ) - self.assertEqual( - d2_grad, - unbound_nt_grads[1].unsqueeze(0), - atol=grad_atol, - rtol=grad_rtol, + + with self.assertRaisesRegex( + RuntimeError, "only a single jagged dim is supported" + ): + torch.ops.aten._padded_dense_to_jagged_forward( + padded, [offsets, offsets], total_L ) - # Default - check_forward_backward() + # error case: > 1D offsets + offsets2d = offsets.unsqueeze(-1) + with self.assertRaisesRegex(RuntimeError, "expected 1D offsets"): + torch.ops.aten._jagged_to_padded_dense_forward( + values, [offsets2d], [max_length], padding_value + ) + + with self.assertRaisesRegex(RuntimeError, "expected 1D offsets"): + torch.ops.aten._padded_dense_to_jagged_forward( + padded, [offsets2d], total_L + ) + + # error case: final offset != total_L + offsets_wrong = offsets.detach().clone() + offsets_wrong[-1] = total_L + 1 + with self.assertRaisesRegex( + RuntimeError, "final offset should match total_L value" + ): + torch.ops.aten._padded_dense_to_jagged_forward( + padded, [offsets_wrong], total_L + ) + + # error case: 1D padded input + padded_wrong = padded.flatten().detach().clone() + with self.assertRaisesRegex(RuntimeError, "expected padded dim >= 2"): + torch.ops.aten._padded_dense_to_jagged_forward( + padded_wrong, [offsets], total_L + ) + + # error case: batch item has length > max length + # max_length is 5 above; 7 here + offsets_wrong = torch.tensor( + [0, 1, 8, 9, 10], device=device, dtype=torch.int64 + ) + with self.assertRaisesRegex(RuntimeError, "found batch item of length"): + torch.ops.aten._padded_dense_to_jagged_forward( + padded, [offsets_wrong], total_L + ) + + @dtypes(torch.float32) + @skipIfTorchDynamo("Test compiles internally") + @unittest.skipIf( + sys.version_info >= (3, 12), "torch.compile is not supported on python 3.12+" + ) + @unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile") + @skipCUDAIf(not SM70OrLater, "GPU capability is < SM70") + @skipCUDAIfRocm + def test_compile_preserves_metadata_cache(self, device, dtype): + # shape (B, *, D) + nt = random_nt_from_dims( + [4, None, 3, 16], + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=True, + ) + + # expect min / max seqlen to be stored here + cache = dict(nt._metadata_cache) + + @torch.compile + def f(nt): + q = nt.transpose(-3, -2) + output = F.scaled_dot_product_attention(q, q, q).transpose(-3, -2) + return output + + output = f(nt) + output.backward(torch.ones_like(output)) + self.assertEqual(output._metadata_cache, cache) + + @dtypes(torch.float32) + @skipIfTorchDynamo("Test compiles internally") + @unittest.skipIf( + sys.version_info >= (3, 12), "torch.compile is not supported on python 3.12+" + ) + @unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile") + @skipCUDAIf(not SM70OrLater, "GPU capability is < SM70") + @skipCUDAIfRocm + def test_compile_with_dynamic_max_seq_len(self, device, dtype): + # shape (B, *, D) + # max seq len: 18 + nt = torch.nested.nested_tensor( + [ + torch.randn(2, 5), + torch.randn(3, 5), + torch.randn(18, 5), + ], + layout=torch.jagged, + ) + + # max seq len: 19 + nt2 = torch.nested.nested_tensor( + [ + torch.randn(2, 5), + torch.randn(3, 5), + torch.randn(19, 5), + ], + layout=torch.jagged, + ) + + def f(nt): + # TODO: Replace with public API when we can use @properties + return torch.ones_like(nt) * nt._get_max_seqlen() + + for dynamic in [False, True, None]: + self.assertFalse(_recompiles_for_inputs(f, (nt,), (nt2,), dynamic=dynamic)) + + @dtypes(torch.float32) + @skipIfTorchDynamo("Test compiles internally") + @unittest.skipIf( + sys.version_info >= (3, 12), "torch.compile is not supported on python 3.12+" + ) + @unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile") + @skipCUDAIf(not SM70OrLater, "GPU capability is < SM70") + @skipCUDAIfRocm + def test_compile_with_dynamic_min_seq_len(self, device, dtype): + # shape (B, *, D) + # min seq len: 7 + nt = torch.nested.nested_tensor( + [ + torch.randn(7, 5), + torch.randn(8, 5), + torch.randn(9, 5), + ], + layout=torch.jagged, + ) + + # min seq len: 8 + nt2 = torch.nested.nested_tensor( + [ + torch.randn(8, 5), + torch.randn(9, 5), + torch.randn(10, 5), + ], + layout=torch.jagged, + ) - # Test dispatcher works by calling only mem-effn and math (as they are safe for all devices) - with torch.backends.xpu.sdp_kernel( - enable_flash=False, enable_mem_efficient=True, enable_math=True - ): - check_forward_backward() + def f(nt): + # TODO: Replace with public API when we can use @properties + return torch.ones_like(nt) * nt._get_min_seqlen() - # Test math fallback - with torch.backends.xpu.sdp_kernel( - enable_flash=False, enable_mem_efficient=False, enable_math=True - ): - # Math fallback doesn't work with bfloat16 on xpu because - # "group_gemm_dispatch" not implemented for 'BFloat16' - if not (str(device).startswith("xpu") and dtype == torch.bfloat16): - check_forward_backward() + for dynamic in [False, True, None]: + self.assertFalse(_recompiles_for_inputs(f, (nt,), (nt2,), dynamic=dynamic)) + @dtypes(torch.float32) + @skipIfTorchDynamo("Test compiles internally") @unittest.skipIf( - not PLATFORM_SUPPORTS_FUSED_ATTENTION, - "Platform doesn't support flash or mem-efficient attention", + sys.version_info >= (3, 12), "torch.compile is not supported on python 3.12+" ) - @skipIfTorchDynamo() @unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile") - def _test_sdpa_autocast(self, device): - def fn_nt(values32, values16, offsets): - nt32 = convert_jagged_to_nested_tensor(values32, offsets, max_length=16) - nt16 = convert_jagged_to_nested_tensor(values16, offsets, max_length=16) - nt32 = nt32.transpose(1, 2) - nt16 = nt16.transpose(1, 2) - return F.scaled_dot_product_attention(nt32, nt16, nt32) + @skipCUDAIf(not SM70OrLater, "GPU capability is < SM70") + @skipCUDAIfRocm + def test_compile_with_propagated_dynamic_max_seq_len(self, device, dtype): + # shape (B, *, D) + # max seq len: 18 + nt = torch.nested.nested_tensor( + [ + torch.randn(2, 5), + torch.randn(3, 5), + torch.randn(18, 5), + ], + layout=torch.jagged, + ) - def fn_dense(x32, x16): - x32 = x32.view(8, 16, 4, 16).transpose(1, 2) - x16 = x16.view(8, 16, 4, 16).transpose(1, 2) - return F.scaled_dot_product_attention(x32, x16, x32) + # max seq len: 19 + nt2 = torch.nested.nested_tensor( + [ + torch.randn(2, 5), + torch.randn(3, 5), + torch.randn(19, 5), + ], + layout=torch.jagged, + ) - values32 = torch.randn((8 * 16, 4, 16), device=device, dtype=torch.float32) - values16 = torch.randn((8 * 16, 4, 16), device=device, dtype=torch.float16) - offsets = torch.arange(0, 8 * 16 + 1, 16, device=device, dtype=torch.int32) + def f(nt): + nt2 = nt.sin() + 1 + # TODO: Replace with public API when we can use @properties + return torch.ones_like(nt2) * nt2._get_max_seqlen() - x32 = values32.clone() - x16 = values16.clone() + ref = f(nt) + output = torch.compile(f, fullgraph=True, dynamic=False)(nt) + self.assertEqual(ref, output) - with torch.autocast(device_type="xpu", dtype=torch.float16): - out_dense_eager = fn_dense(x32, x16) - out_dense_compiled = torch.compile(fn_dense)(x32, x16) - out_nt_eager = fn_nt(values32, values16, offsets) - out_nt_compiled = torch.compile(fn_nt)(values32, values16, offsets) + for dynamic in [False, True, None]: + self.assertFalse(_recompiles_for_inputs(f, (nt,), (nt2,), dynamic=dynamic)) - self.assertEqual(out_dense_eager, out_dense_compiled) - self.assertEqual( - out_dense_eager.transpose(1, 2), - out_nt_eager.values().transpose(0, 1).view(8, 16, 4, 16), + def test_dropout_inference_mode(self, device): + seq_len = 32 + embed_dim = 128 + + nt = torch.nested.nested_tensor( + [ + torch.randn(11, seq_len, embed_dim, device=device), + torch.randn(11, seq_len, embed_dim, device=device), + ], + layout=torch.jagged, + device=device, ) - self.assertEqual( - out_dense_eager.transpose(1, 2), - out_nt_compiled.values().transpose(0, 1).view(8, 16, 4, 16), + + with torch.inference_mode(): + torch.nn.functional.dropout(nt, p=0.05) + + @dtypes(torch.float32, torch.double, torch.half) + def test_unbind_backward(self, device, dtype): + nt = torch.nested.nested_tensor( + [ + torch.randn(2, 4, device=device), + torch.randn(5, 4, device=device), + torch.randn(3, 4, device=device), + ], + layout=torch.jagged, + requires_grad=True, ) - def get_values(): - return tuple( - x.detach().clone().requires_grad_(True) for x in (values32, values16) - ) + a, b, c = nt.unbind() + b.sum().backward() - v32_dense_eager, v16_dense_eager = get_values() - v32_dense_compile, v16_dense_compile = get_values() - v32_nt_eager, v16_nt_eager = get_values() - v32_nt_compile, v16_nt_compile = get_values() + @torch._dynamo.disable + def check(nt): + expected_grad = torch.zeros_like(nt) + expected_grad.unbind()[1].add_(1.0) + self.assertEqual(nt.grad, expected_grad) - with torch.autocast(device_type="xpu", dtype=torch.float16): - loss_dense_eager = fn_dense(v32_dense_eager, v16_dense_eager).sum() - loss_dense_compile = torch.compile(fn_dense)( - v32_dense_compile, v16_dense_compile - ).sum() - loss_nt_eager = fn_nt(v32_nt_eager, v16_nt_eager, offsets).values().sum() - loss_nt_compile = ( - torch.compile(fn_nt)(v32_nt_compile, v16_nt_compile, offsets) - .values() - .sum() - ) + check(nt) - loss_dense_eager.backward() - loss_dense_compile.backward() - loss_nt_eager.backward() - loss_nt_compile.backward() + @dtypes(torch.float32, torch.double, torch.half, torch.bool) + @parametrize("nt_dim", [2, 3, 4]) + @parametrize("requires_grad", [False, True]) + def test_to_padded_tensor(self, device, dtype, nt_dim, requires_grad): + if dtype is torch.bool and requires_grad: + # grads not supported for bool + return - self.assertEqual(v32_dense_eager.grad, v32_dense_compile.grad) - self.assertEqual(v32_dense_eager.grad, v32_nt_eager.grad, atol=1e-4, rtol=1e-4) - self.assertEqual( - v32_dense_eager.grad, v32_nt_compile.grad, atol=1e-4, rtol=1e-4 - ) + if nt_dim == 2: + post_seq_len_shape = () + elif nt_dim == 3: + post_seq_len_shape = (10,) + elif nt_dim == 4: + post_seq_len_shape = (9, 10) - self.assertEqual(v16_dense_eager.grad, v16_dense_compile.grad) - self.assertEqual(v16_dense_eager.grad, v16_nt_eager.grad, atol=1e-5, rtol=5e-3) - self.assertEqual( - v16_dense_eager.grad, v16_nt_compile.grad, atol=1e-5, rtol=5e-3 + nt = torch.nested.nested_tensor( + [ + ( + torch.randint( + 2, (n, *post_seq_len_shape), device=device, dtype=dtype + ) + if dtype is torch.bool + else torch.randn(n, *post_seq_len_shape, device=device, dtype=dtype) + ) + for n in range(2, 9) + ], + layout=torch.jagged, + requires_grad=requires_grad, ) + PADDING_VAL = 4.2 + expected_padded = nt._values.new_full((7, 8, *post_seq_len_shape), PADDING_VAL) + for i, component in enumerate(nt.unbind()): + expected_padded[i, : component.shape[0]].copy_(component) + + padded = nt.to_padded_tensor(PADDING_VAL) + self.assertEqual(expected_padded, padded) + + # convert padded dense -> NJT + from torch.nested._internal.nested_tensor import nested_from_padded + + nt2 = nested_from_padded(padded, nt.offsets()) + self.assertEqual(nt, nt2) + + if requires_grad and dtype is not torch.bool: + # ensure gradients flow through conversions + nt2.backward(torch.ones_like(nt2)) + self.assertEqual(nt.grad, torch.ones_like(nt)) + # blows up due to test parametrization otherwise @torch._dynamo.utils.disable_cache_limit() @skipIfTorchDynamo("SDPA test compiles internally") @unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile") + @skipCUDAIf(not SM70OrLater, "GPU capability is < SM70") + @skipCUDAIfRocm @dtypes(torch.float32, torch.double, torch.half) @parametrize("nt_dim", [2, 3, 4]) @parametrize("requires_grad", [False, True]) - def _test_to_padded_tensor_compile(self, device, dtype, nt_dim, requires_grad): + def test_to_padded_tensor_compile(self, device, dtype, nt_dim, requires_grad): if dtype is torch.bool and requires_grad: # grads not supported for bool return @@ -744,9 +7993,13 @@ def _test_to_padded_tensor_compile(self, device, dtype, nt_dim, requires_grad): nt = torch.nested.nested_tensor( [ - torch.randint(2, (n, *post_seq_len_shape), device=device, dtype=dtype) - if dtype is torch.bool - else torch.randn(n, *post_seq_len_shape, device=device, dtype=dtype) + ( + torch.randint( + 2, (n, *post_seq_len_shape), device=device, dtype=dtype + ) + if dtype is torch.bool + else torch.randn(n, *post_seq_len_shape, device=device, dtype=dtype) + ) for n in range(2, 9) ], layout=torch.jagged, @@ -800,7 +8053,7 @@ def _g(nt): ) # NB: Fusion isn't supported on CPU. - self.assertEqual("xpu" in device, not fallback_op_calls_present) + self.assertEqual("cuda" in device, not fallback_op_calls_present) for i in range(len(generated_code)): # Examine buffer construction lines in the generated code to determine @@ -809,7 +8062,7 @@ def _g(nt): buffer_constructions = [ line.strip() for line in generated_code[i].split("\n") - if "empty_strided_xpu(" in line + if "empty_strided_cuda(" in line ] buffer_dims = [ @@ -818,24 +8071,1059 @@ def _g(nt): for t in buffer_constructions ] - if "xpu" in device: + if "cuda" in device: self.assertFalse(any(d == 3 for d in buffer_dims)) - TestNestedTensor.test_to = _test_to - TestNestedTensor.test_copy_ = _test_copy_ - TestNestedTensorDeviceType.test_device_checks = _test_device_checks - TestNestedTensorDeviceType.test_empty_like = _test_empty_like - TestNestedTensorSubclass.test_linear_backward_memory_usage = ( - _test_linear_backward_memory_usage + @dtypes(torch.float32) + @skipIfTorchDynamo("Test compiles internally") + @unittest.skipIf( + sys.version_info >= (3, 12), "torch.compile is not supported on python 3.12+" + ) + @unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile") + @skipCUDAIf(not SM70OrLater, "GPU capability is < SM70") + @skipCUDAIfRocm + def test_compile_padded_dense_conversion_preserves_metadata_cache( + self, device, dtype + ): + # shape (B, *, D) + nt = random_nt_from_dims( + [4, None, 3, 16], + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=True, + ) + + # expect min / max seqlen to be stored here + cache = dict(nt._metadata_cache) + + @torch.compile + def g(nt): + padded = nt.to_padded_tensor(0.3) + intermediate = padded.sin() + 1 + + from torch.nested._internal.nested_tensor import nested_from_padded + + return nested_from_padded( + intermediate, + nt.offsets(), + min_seqlen=nt._min_seqlen, + max_seqlen=nt._max_seqlen, + sum_S=nt.values().shape[0], + ) + + output = g(nt) + output.backward(torch.ones_like(output)) + self.assertEqual(output._metadata_cache, cache) + + # See https://github.com/pytorch/pytorch/issues/128649 + @dtypes(torch.float32) + def test_composite_op_in_inference_mode(self, device, dtype): + # expect view + nt = random_nt_from_dims( + [4, None, 48], + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=True, + ) + + with torch.inference_mode(): + output = nt.reshape([4, -1, 3, 16]) + self.assertEqual(output.shape, (4, nt.shape[1], 3, 16)) + self.assertTrue(output._is_view()) + + # expect copy + nt = random_nt_from_dims( + [4, None, 3, 16], + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=True, + ).transpose(-1, -2) + + with torch.inference_mode(): + output = nt.reshape([4, -1, 48]) + self.assertEqual(output.shape, (4, nt.shape[1], 48)) + self.assertFalse(output._is_view()) + + @dtypes(torch.float32) + def test_composite_op_with_custom_mode(self, device, dtype): + from torch.utils._python_dispatch import TorchDispatchMode + + # simple passthrough TorchDispatchMode + class CustomDispatchMode(TorchDispatchMode): + def __torch_dispatch__(self, func, types, args=..., kwargs=None): + return func(*args, **kwargs) + + nt = random_nt_from_dims( + [4, None, 2, 3], + device=device, + dtype=dtype, + layout=torch.jagged, + requires_grad=True, + ) + with CustomDispatchMode(): + res = nt.reshape(4, -1, 6) + + self.assertEqual(res.shape, (4, nt.shape[1], 6)) + + @skipIfTorchDynamo("compiles internally") + @unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile") + @skipCUDAIf(not SM70OrLater, "GPU capability is < SM70") + @dtypes(torch.float32) + @torch._dynamo.config.patch(capture_dynamic_output_shape_ops=True) + @torch._dynamo.config.patch(capture_scalar_outputs=True) + def test_broadcast_shapes_on_in_graph_constructed_njt(self, device, dtype): + # Tests that a guard isn't wrongly installed on a freshly-created nested int when + # broadcast_shapes() is used on NJT shapes. + # See https://github.com/pytorch/pytorch/issues/145874 for more context. + nt = torch.nested.nested_tensor( + [ + torch.randn(2), + torch.randn(3), + torch.randn(4), + ], + layout=torch.jagged, + device=device, + dtype=dtype, + ) + + values = nt._values.detach().clone() + offsets = nt._offsets.detach().clone() + + @torch.compile(fullgraph=True) + def f(values, offsets): + nt = torch.nested.nested_tensor_from_jagged(values, offsets) + # NB: torch.where() utilizes broadcast_shapes() underneath + return torch.where(nt > 0.0, torch.ones_like(nt), torch.zeros_like(nt)) + + output = f(values, offsets) + self.assertTrue(output.is_nested) + self.assertEqual(nt.shape[:-1], output.shape[:-1]) + for nt_component, output_component in zip(nt.unbind(), output.unbind()): + self.assertEqual(nt_component.shape, output_component.shape) + + +# The following lists specify skips and xfails for particular SampleInputs. Note that +# these are attempted to be matched from top to bottom and only one at most will +# be matched, so order matters! The guiding general principle here should be one +# xfail / skip per bug if at all possible :) +FORWARD_SKIPS_AND_XFAILS = [ + # not implemented + XFailRule( + error_type=NotImplementedError, + op_match_fn=lambda device, op: op.full_name + in { + # unary + # needs log_sigmoid_forward, which returns a tuple + "nn.functional.logsigmoid", + "nn.functional.prelu", + # needs rrelu_with_noise + "nn.functional.rrelu", + # binary + "__rsub__", + "complex", + "floor_divide", + "polar", + "rsub", + # reduction + "count_nonzero", + "linalg.vector_norm", + "nansum", + "std", + "std.unbiased", + "var", + "var.unbiased", + "hash_tensor", + }, + name="not_implemented", + ), + # expected: torch.where() support has some limitations + # 1. condition must be an NJT + # 2. no dense tensors of higher dim than the NJT + XFailRule( + error_type=ValueError, + error_msg="expected condition to be a jagged layout NestedTensor", + op_match_fn=lambda device, op: op.full_name == "where", + sample_match_fn=lambda device, sample: not sample.kwargs["condition"].is_nested, + ), + XFailRule( + error_type=ValueError, + error_msg="broadcasting nested tensors with dense tensors of equal or higher dim", + op_match_fn=lambda device, op: op.full_name == "where", + sample_match_fn=lambda device, sample: ( + ( + not sample.input.is_nested + and sample.input.dim() >= sample.kwargs["condition"].dim() + ) + or ( + not sample.kwargs["other"].is_nested + and sample.kwargs["other"].dim() >= sample.kwargs["condition"].dim() + ) + ), + ), + # expected: masked ops don't support jagged layout + XFailRule( + error_type=ValueError, + error_msg="expects strided", + op_match_fn=lambda device, op: op.full_name + in { + "masked.amax", + "masked.amin", + "masked.argmax", + "masked.argmin", + "masked.logsumexp", + "masked.mean", + "masked.norm", + "masked.prod", + "masked.std", + "masked.sum", + "masked.var", + }, + name="no_masked_jagged_support", + ), + # Op doesn't support lengths being present + XFailRule( + error_type=ValueError, + error_msg="expected input to be a contiguous jagged layout NestedTensor", + op_match_fn=lambda device, op: (op.full_name == "nn.functional.linear"), + sample_match_fn=lambda device, sample: (sample.input._lengths is not None), + name="no_linear_noncontig_holes_support", + ), + # nanmean sometimes hits an unimplemented nansum() path and other times hits an + # unimplemented sum() path + XFailRule( + error_type=NotImplementedError, + op_match_fn=lambda device, op: (op.full_name == "nanmean"), + sample_match_fn=lambda device, sample: ( + not ( + "noncontig_holes" in sample.name + and "dim" in sample.kwargs + and ( + ( + isinstance(sample.kwargs["dim"], int) + and sample.kwargs["dim"] == sample.input._ragged_idx + ) + or ( + isinstance(sample.kwargs["dim"], (tuple, list)) + and sample.input._ragged_idx in sample.kwargs["dim"] + ) + ) + ) + ), + name="nansum_unimplemented", + ), + # expected: reducing across the ragged dimension is not supported for non-contiguous + # nested tensors with holes + XFailRule( + error_type=RuntimeError, + error_msg=( + "reducing across the ragged dimension is not supported for non-contiguous " + "nested tensors with holes" + ), + op_match_fn=lambda device, op: ( + # min.reduction_with_dim and max.reduction_with_dim aren't associated with + # ReductionOpInfo entries sadly even though they're reductions + isinstance(op, ReductionOpInfo) + or "reduction_with_dim" in op.full_name + ), + sample_match_fn=lambda device, sample: ( + "noncontig_holes" in sample.name + and "dim" in sample.kwargs + and ( + ( + isinstance(sample.kwargs["dim"], int) + and sample.kwargs["dim"] == sample.input._ragged_idx + ) + or ( + isinstance(sample.kwargs["dim"], (tuple, list)) + and sample.input._ragged_idx in sample.kwargs["dim"] + ) + ) + ), + name="ragged_dim_reduction_noncontig_holes", + ), + # expected: index_put() doesn't work on non-contiguous NJTs without ragged dimension indices + XFailRule( + error_type=RuntimeError, + error_msg="If ragged dimension is not part of indices, this only works on contiguous NJTs", + op_match_fn=lambda device, op: (op.full_name == "index_put"), + sample_match_fn=lambda device, sample: ( + not sample.input.is_contiguous() + and len(sample.kwargs["indices"]) - 1 < sample.input._ragged_idx + ), + name="index_put_noncontig_holes_no_ragged_dim_indices", + ), + # select() only supports dim=0 for non-contiguous with holes NJTs for now + XFailRule( + op_match_fn=lambda device, op: (op.full_name == "select"), + sample_match_fn=lambda device, sample: ( + sample.kwargs["dim"] != 0 and "noncontig_holes" in sample.name + ), + name="unsupported_select_on_non_batch_dim_with_noncontig_holes", + ), + # these don't work on non-contiguous NJTs yet + XFailRule( + error_type=ValueError, + error_msg="expected self to be a contiguous jagged layout NestedTensor", + op_match_fn=lambda device, op: ( + op.full_name + in { + "chunk", + "masked_select", + "narrow", + "split", + "split_with_sizes", + "squeeze", + } + ), + sample_match_fn=lambda device, sample: ( + sample.input._lengths is not None or sample.input._ragged_idx != 1 + ), + name="missing_noncontig_support", + ), + # these don't work on the ragged dim yet + XFailRule( + error_type=RuntimeError, + error_msg="not supported for NestedTensor on ragged dim", + op_match_fn=lambda device, op: ( + op.full_name + in { + "chunk", + "narrow", + "select", + "split", + } + ), + sample_match_fn=lambda device, sample: "ragged_dim" in sample.name, + name="ragged_dim_unsupported", + ), + XFailRule( + error_type=RuntimeError, + # error comes from usage of view() in the decomp + error_msg="does not support ragged_idx != 1 except when", + op_match_fn=lambda device, op: (op.full_name == "unflatten"), + sample_match_fn=lambda device, sample: "noncontig_transposed" in sample.name, + name="unflatten_ragged_dim_unsupported", + ), + # these don't work on the batch dim yet + XFailRule( + error_type=RuntimeError, + error_msg="not supported for NestedTensor on dim=0", + op_match_fn=lambda device, op: ( + op.full_name + in { + "narrow", + "split", + "split_with_sizes", + "unsqueeze", + } + ), + sample_match_fn=lambda device, sample: "batch_dim" in sample.name, + name="batch_dim_unsupported", + ), + XFailRule( + error_type=RuntimeError, + # error comes from usage of view() in the decomp + error_msg="cannot view shape", + op_match_fn=lambda device, op: (op.full_name == "unflatten"), + sample_match_fn=lambda device, sample: "batch_dim" in sample.name, + name="unflatten_batch_dim_unsupported", + ), + # expected: bmm / matmul sometimes use a to_padded_tensor() fallback which isn't + # supported for non-contig NJTs with holes + XFailRule( + error_type=RuntimeError, + error_msg="not supported for nested tensors with holes", + op_match_fn=lambda device, op: (op.full_name in {"bmm", "matmul"}), + sample_match_fn=lambda device, sample: ( + "noncontig_holes" in sample.name + # "other" is the name for the matmul arg and "mat2" is the name for the bmm arg + and sample.input.dim() + == sample.kwargs.get("other", sample.kwargs.get("mat2")).dim() + ), + name="mm_noncontig_holes", + ), + # some jiterator op failures due to unsupported jagged layout + XFailRule( + error_type=RuntimeError, + error_msg="unsupported tensor layout", + op_match_fn=lambda device, op: op.full_name + in { + "jiterator_binary", + "jiterator_binary_return_by_ref", + "jiterator_unary", + }, + name="no_jiterator_jagged_support", + ), + # Bug when broadcasting a binary op with non-contiguous with holes NJT + dense + # tensor with 1 in ragged dim. + XFailRule( + error_type=RuntimeError, + error_msg="cannot call binary pointwise function .* with inputs of shapes", + op_match_fn=lambda device, op: (isinstance(op, BinaryUfuncInfo)), + sample_match_fn=lambda device, sample: ( + "noncontig_holes" in sample.name + and "broadcasting 1 over ragged" in sample.name + ), + name="binary_noncontig_holes_broadcasting_1_over_ragged", + ), +] + +BACKWARD_SKIPS_AND_XFAILS = [ + # segfaults, so skip. It's trying to use the NST logic for NJT + SkipRule( + op_match_fn=lambda device, op: op.full_name == "split_with_sizes", + name="split_with_sizes_backward_segfault", + ), + *FORWARD_SKIPS_AND_XFAILS, + # Backwards is generally broken for non-contiguous NJTs with holes. Rather than + # determine the exceptions in detail, just skip for now. Fix is to ensure + # that summing over gradients during backwards after broadcasting takes into + # account holes / lengths. + SkipRule( + op_match_fn=lambda device, op: ( + isinstance(op, BinaryUfuncInfo) + or op.full_name in {"mean", "where", "unsqueeze"} + ), + sample_match_fn=lambda device, sample: ("noncontig_holes" in sample.name), + name="broken_noncontig_holes_backward", + ), + # mean(): need to examine backwards formula + XFailRule( + error_type=RuntimeError, + error_msg="SymIntArrayRef expected to contain only concrete integers", + op_match_fn=lambda device, op: (op.full_name in {"mean"}), + sample_match_fn=lambda device, sample: ( + "full reduction" not in sample.name + and "normal dim reduction" not in sample.name + ), + name="broken_mean_backward", + ), + # RuntimeError: expand(): cannot expand shape (3, 3, 1, j44) -> [3, 3, 7, j44] + # with noncontig transposed inputs to mean() + XFailRule( + error_type=RuntimeError, + error_msg="cannot expand shape", + op_match_fn=lambda device, op: (op.full_name == "mean"), + sample_match_fn=lambda device, sample: ( + "normal dim reduction" in sample.name + and "noncontig_transposed" in sample.name + ), + name="broken_mean_backward2", + ), + # unsqueeze() backward tries to call squeeze with noncontig transposed, + # but that's not supported + XFailRule( + error_type=ValueError, + error_msg="expected self to be a contiguous jagged layout NestedTensor", + op_match_fn=lambda device, op: (op.full_name == "unsqueeze"), + sample_match_fn=lambda device, sample: ( + "noncontig_transposed" in sample.name or "ragged_dim" in sample.name + ), + name="broken_unsqueeze_backward", + ), + # RuntimeError: view(): cannot view shape (3, j62, 1, 7, 3) as [3, j58, 7, 3] + # with unflatten() + XFailRule( + error_type=RuntimeError, + error_msg="cannot view shape", + op_match_fn=lambda device, op: (op.full_name in {"unflatten"}), + sample_match_fn=lambda device, sample: ("noncontig_holes" in sample.name), + name="broken_unflatten_backward", + ), + # sum() backward is not implemented for non-full reductions + XFailRule( + error_type=NotImplementedError, + error_msg="aten._nested_sum_backward.default", + op_match_fn=lambda device, op: (op.full_name == "sum"), + sample_match_fn=lambda device, sample: ("full reduction" not in sample.name), + name="broken_sum_backward", + ), + # squeeze(): invalid gradient shape; need to check formula + XFailRule( + error_type=RuntimeError, + error_msg="returned an invalid gradient at index 0", + op_match_fn=lambda device, op: (op.full_name == "squeeze"), + sample_match_fn=lambda device, sample: ( + sample.name == "5D_contig_with_seqlen_cache: normal_dim" + and sample.kwargs["dim"] == 3 + ), + name="broken_squeeze_backward", + ), + # sgn() / masked_select(): backwards formulas don't work at all + XFailRule( + error_type=RuntimeError, + error_msg="NestedTensor does not support directly calling torch.ops.aten.size", + op_match_fn=lambda device, op: (op.full_name in {"sgn", "masked_select"}), + name="broken_sgn_masked_select_backward", + ), + # select(): grad_output is an NJT for non-batch-dim operation + XFailRule( + error_type=ValueError, + error_msg="expected grad_output to be a tensor", + op_match_fn=lambda device, op: (op.full_name == "select"), + sample_match_fn=lambda device, sample: ("batch_dim" not in sample.name), + name="broken_select_backward", + ), + # prod(): completely broken in every way + XFailRule( + op_match_fn=lambda device, op: (op.full_name == "prod"), + name="broken_prod_backward", + ), + # pow() / float_power(): use where() underneath; broken for (NT, T) broadcasting cases + XFailRule( + error_type=ValueError, + error_msg="expected condition to be a jagged layout NestedTensor", + op_match_fn=lambda device, op: (op.full_name in {"pow", "float_power"}), + sample_match_fn=lambda device, sample: ("(NT, T)" in sample.name), + name="broken_pow_backward", + ), + # __rpow__() backward is also broken, but for the reverse (T, NT) broadcasting cases + XFailRule( + error_type=ValueError, + error_msg="expected condition to be a jagged layout NestedTensor", + op_match_fn=lambda device, op: (op.full_name == "__rpow__"), + sample_match_fn=lambda device, sample: ("(T, NT)" in sample.name), + name="broken_rpow_backward", + ), + # linear(): some formula problem when bias is used; seems to be platform-specific + # (fails locally but not in CI) + SkipRule( + # result2.use_count() <= 1 INTERNAL ASSERT FAILED + op_match_fn=lambda device, op: (op.full_name == "nn.functional.linear"), + sample_match_fn=lambda device, sample: ("with bias" in sample.name), + name="broken_linear_backward", + ), + # narrow(): unimplemented backward + XFailRule( + error_type=RuntimeError, + error_msg="derivative for aten::narrow is not implemented", + op_match_fn=lambda device, op: (op.full_name == "narrow"), + name="broken_narrow_backward", + ), + # min / max: need factory function support for ragged dim reductions + # where the output is dense but sizes still contain a nested int + XFailRule( + error_type=RuntimeError, + error_msg="SymIntArrayRef expected to contain only concrete integers", + op_match_fn=lambda device, op: ( + op.full_name in {"max.reduction_with_dim", "min.reduction_with_dim"} + ), + sample_match_fn=lambda device, sample: ("ragged dim" in sample.name), + name="broken_min_max_reduction_with_dim_backward_on_ragged_dim", + ), + # copysign(): formula is broken for (T, NT) broadcasting + XFailRule( + error_type=RuntimeError, + error_msg="SymIntArrayRef expected to contain only concrete integers", + op_match_fn=lambda device, op: (op.full_name == "copysign"), + sample_match_fn=lambda device, sample: ("(T, NT)" in sample.name), + name="broken_copysign_backward", + ), + # amin() / amax(): broken in a host of ways I don't think it's a good use of time + # to try to sift through + SkipRule( + op_match_fn=lambda device, op: (op.full_name in {"amin", "amax"}), + name="broken_amin_amax_backward", + ), + XFailRule( + error_type=RuntimeError, + error_msg="reducing across the ragged dimension is not supported for non-contiguous", + op_match_fn=lambda device, op: ( + isinstance(op, BinaryUfuncInfo) + # doesn't happen for these ops for some reason + and op.full_name + not in {"copysign", "max.binary", "maximum", "min.binary", "minimum"} + ), + sample_match_fn=lambda device, sample: ( + "(NT, T) broadcasting all 1s" in sample.name + and "noncontig_holes" in sample.name + ), + name="binary_noncontig_holes_ragged_dim_reduction", + ), + XFailRule( + error_type=RuntimeError, + error_msg="reducing across the ragged dimension is not supported for non-contiguous", + op_match_fn=lambda device, op: (op.full_name == "nn.functional.rms_norm"), + sample_match_fn=lambda device, sample: (sample.input._lengths is not None), + name="rms_norm_noncontig_holes_ragged_dim_reduction", + ), + # expected: autodiff on complex dtype is not supported + XFailRule( + error_type=RuntimeError, + error_msg=( + "_nested_view_from_jagged does not support automatic differentiation " + "for outputs with complex dtype" + ), + op_match_fn=lambda device, op: (op.full_name in {"cdouble", "cfloat", "chalf"}), + name="no_complex_autodiff", + ), + # Bug: need to use the correct nested int in the return shape + XFailRule( + error_type=RuntimeError, + error_msg="Function CloneBackward0 returned an invalid gradient", + op_match_fn=lambda device, op: (op.full_name == "clone"), + sample_match_fn=lambda device, sample: ( + sample.kwargs.get("memory_format", None) == torch.contiguous_format + ), + name="clone_wrong_nested_int_for_gradient", + ), + # some min / max ops use masked_fill_ underneath sometimes, which isn't implemented + XFailRule( + error_type=NotImplementedError, + error_msg="aten.masked_fill_.Scalar", + op_match_fn=lambda device, op: ( + op.full_name + in {"max.binary", "min.binary", "minimum", "maximum", "copysign"} + ), + name="unimplemented_masked_fill", + ), +] + +COMPILE_FORWARD_SKIPS_AND_XFAILS = [ + *FORWARD_SKIPS_AND_XFAILS, + # Bug: cross-device conversions with to() result in new nested ints within compile only + XFailRule( + error_type=AssertionError, + error_msg="The values for attribute 'shape' do not match", + op_match_fn=lambda device, op: (op.full_name == "to"), + sample_match_fn=lambda device, sample: ("-> cpu" in sample.name), + name="cross_device_transfer_wrong_nested_int_in_compile", + ), + # clone() -> preserve format on an non-contiguous NJT with holes currently uses + # unbind(), leading to data-dependent expression. Should be fixed via torch._check() + XFailRule( + error_type=torch._dynamo.exc.Unsupported, + # Ne(u1, u0) (unhinted: Ne(u1, u0)). (Size-like symbols: u1, u0) + error_msg="Could not guard on data-dependent expression", + op_match_fn=lambda device, op: (op.full_name == "clone"), + sample_match_fn=lambda device, sample: ( + "noncontig_holes" in sample.name + and sample.kwargs.get("memory_format", None) == torch.contiguous_format + ), + name="clone_unbind_data_dependency", + ), + # chunk(): broken in several ways on the batch dim; revisit after similar + # data-dependency issues are handled for narrow() + SkipRule( + op_match_fn=lambda device, op: (op.full_name == "chunk"), + sample_match_fn=lambda device, sample: ("batch_dim" in sample.name), + name="broken_chunk_compile_backward_on_batch_dim", + ), + # select on batch dim currently uses unbind(), leading to data-dependent error in + # torch.compile that needs to be addressed via torch._check() + XFailRule( + error_type=torch._dynamo.exc.InternalTorchDynamoError, + error_msg="Pending unbacked symbols", + op_match_fn=lambda device, op: (op.full_name == "select"), + sample_match_fn=lambda device, sample: ("batch_dim" in sample.name), + name="broken_select_backward_unbacked", + ), +] + +COMPILE_BACKWARD_SKIPS_AND_XFAILS = [ + # non-contiguous with holes inputs + torch.compile doesn't work great today; need + # torch._check() statements. Skip these and handle them later. + SkipRule( + op_match_fn=lambda device, op: True, + sample_match_fn=lambda device, sample: ("noncontig_holes" in sample.name), + name="noncontig_holes_data_dependency", + ), + # mean(): weird bug + XFailRule( + error_type=torch._dynamo.exc.BackendCompilerFailed, + error_msg="'NestedIntNode' object has no attribute 'sub'", + op_match_fn=lambda device, op: (op.full_name == "mean"), + sample_match_fn=lambda device, sample: ( + "full reduction" not in sample.name + and "normal dim reduction" not in sample.name + ), + name="broken_mean_compile_backward", + ), + # min() / max(): weird bug + XFailRule( + error_type=AttributeError, + error_msg="'NestedIntNode' object has no attribute 'add'", + op_match_fn=lambda device, op: ( + op.full_name in {"max.reduction_with_dim", "min.reduction_with_dim"} + ), + sample_match_fn=lambda device, sample: ("ragged dim" in sample.name), + name="broken_min_max_compile_backward", + ), + # to() fails with data-dependent guards OR Unknown layout in record_stream_any_impl; + # need to fix with torch._check(), etc. + XFailRule( + op_match_fn=lambda device, op: (op.full_name == "to"), + sample_match_fn=lambda device, sample: ("-> cpu" in sample.name), + name="to_data_dependency", + ), + # copysign(): formula is broken for (T, NT) broadcasting + XFailRule( + error_type=AttributeError, + error_msg="'NestedIntNode' object has no attribute 'add'", + op_match_fn=lambda device, op: (op.full_name == "copysign"), + sample_match_fn=lambda device, sample: ("(T, NT)" in sample.name), + name="broken_copysign_compile_backward", + ), + # in compile, these complex ops use view_as_real(), which isn't implemented + XFailRule( + error_type=NotImplementedError, + error_msg="aten.view_as_real.default", + op_match_fn=lambda device, op: (op.full_name in {"cdouble", "cfloat", "chalf"}), + name="unimplemented_view_as_real", + ), + *COMPILE_FORWARD_SKIPS_AND_XFAILS, + *BACKWARD_SKIPS_AND_XFAILS, +] + +COMPARE_TENSOR_COMPONENT_EQUALITY = { + # masked_select is expected to output a different shape + "masked_select", +} + + +# OpInfo-based NJT tests. These tests utilize an NJT-specific op_db generated from the standard +# op_db. Note that certain tradeoffs were made wrt coverage vs. time spent running tests: +# * All tests run with dtype=torch.float32 only +class TestNestedTensorOpInfo(NestedTensorTestCase): + # TODO: move this + def _gen_grad_outputs(self, out_val): + if isinstance(out_val, (list, tuple)): + need_grad_outs = tuple(o for o in out_val if o.grad_fn is not None) + grad_outputs = tuple( + torch.ones_like(o) for o in out_val if o.grad_fn is not None + ) + return need_grad_outs, grad_outputs + else: + return out_val, (torch.ones_like(out_val),) + + @ops( + [op for op in njt_op_db if op.supports_njt], + allowed_dtypes=(torch.float32,), + ) + @tf32_on_and_off(0.005) + @sample_skips_and_xfails(FORWARD_SKIPS_AND_XFAILS) + def test_forward(self, device, dtype, op): + for sample, subtest_ctx, skip_xfail_ctx in op.sample_inputs( + device=device, + dtype=dtype, + requires_grad=False, + use_subtests=True, + ): + with subtest_ctx(self), skip_xfail_ctx(self): + # compare to reference, but expect different nested int + out = op.op(sample.input, *sample.args, **sample.kwargs) + out_ref = op.ref(op, sample) + self.assertEqualIgnoringNestedInts(out, out_ref) + if op._extra_op_data.is_view: + tree_map_only( + NestedTensor, lambda x: self.assertTrue(x._is_view()), out + ) + + # TODO: Revisit once https://github.com/pytorch/pytorch/pull/138369 lands + # TODO: Add xfails for other inplace ops instead of hardcoding + if op.inplace_variant and "index_put" in op.full_name: + op.inplace_variant(sample.input, *sample.args, **sample.kwargs) + self.assertEqualIgnoringNestedInts(sample.input, out_ref) + + @ops( + [op for op in njt_op_db if op.supports_njt and op.supports_autograd], + allowed_dtypes=(torch.float32,), + ) + @tf32_on_and_off(0.005) + @sample_skips_and_xfails(BACKWARD_SKIPS_AND_XFAILS) + def test_backward(self, device, dtype, op): + for sample, subtest_ctx, skip_xfail_ctx in op.sample_inputs( + device=device, dtype=dtype, requires_grad=True, use_subtests=True + ): + with subtest_ctx(self), skip_xfail_ctx(self): + # compare to reference, but expect different nested int + out = op.op(sample.input, *sample.args, **sample.kwargs) + out_ref = op.ref(op, sample) + self.assertEqualIgnoringNestedInts(out, out_ref) + if op._extra_op_data.is_view: + tree_map_only( + NestedTensor, lambda x: self.assertTrue(x._is_view()), out + ) + + inps, _ = tree_flatten((sample.input, sample.args, sample.kwargs)) + g_inps = [ + inp + for inp in inps + if isinstance(inp, torch.Tensor) and inp.requires_grad + ] + if len(g_inps) > 0: + need_grad_outs, grad_outputs = self._gen_grad_outputs(out) + grads = torch.autograd.grad( + need_grad_outs, inputs=g_inps, grad_outputs=grad_outputs + ) + + need_grad_outs, grad_outputs = self._gen_grad_outputs(out_ref) + grads_ref = torch.autograd.grad( + need_grad_outs, inputs=g_inps, grad_outputs=grad_outputs + ) + + self.assertEqualNoncontigAware(grads, grads_ref) + + @ops( + [op for op in njt_op_db if op.supports_njt], + allowed_dtypes=(torch.float32,), + ) + @torch._dynamo.config.patch(capture_dynamic_output_shape_ops=True) + # needed to avoid "data dependent operator: aten._local_scalar_dense.default" + @torch._dynamo.config.patch(capture_scalar_outputs=True) + @sample_skips_and_xfails(COMPILE_FORWARD_SKIPS_AND_XFAILS) + def test_compile_forward(self, device, dtype, op): + for sample, subtest_ctx, skip_xfail_ctx in op.sample_inputs( + device=device, dtype=dtype, requires_grad=False, use_subtests=True + ): + with subtest_ctx(self), skip_xfail_ctx(self): + torch.compiler.reset() + + op_fn = op.op + + def f(*args, **kwargs): + return op_fn(*args, **kwargs) + + compiled_f = torch.compile( + f, fullgraph=True, backend="aot_eager_decomp_partition" + ) + + out_ref = f(sample.input, *sample.args, **sample.kwargs) + out_compile = compiled_f(sample.input, *sample.args, **sample.kwargs) + if op._extra_op_data.is_view: + tree_map_only( + NestedTensor, lambda x: self.assertTrue(x._is_view()), out_ref + ) + + if op.full_name in COMPARE_TENSOR_COMPONENT_EQUALITY: + self.assertEqualIgnoringNestedInts(out_compile, out_ref) + else: + self.assertEqual(out_compile, out_ref) + + # TODO: Revisit once https://github.com/pytorch/pytorch/pull/138369 lands + # TODO: Add xfails for other inplace ops instead of hardcoding + if op.inplace_variant and "index_put" in op.full_name: + op_fn = op.inplace_variant + + def in_f(*args, **kwargs): + return op_fn(*args, **kwargs) + + compiled_in_f = torch.compile( + in_f, fullgraph=True, backend="aot_eager_decomp_partition" + ) + + compiled_in_f(sample.input, *sample.args, **sample.kwargs) + if op.full_name in COMPARE_TENSOR_COMPONENT_EQUALITY: + self.assertEqualIgnoringNestedInts(sample.input, out_ref) + else: + self.assertEqual(sample.input, out_ref) + + @ops( + [op for op in njt_op_db if op.supports_njt and op.supports_autograd], + allowed_dtypes=(torch.float32,), ) - TestNestedTensorSubclass.test_record_stream = _test_record_stream - TestNestedTensorSubclass.test_construction_from_list = _test_construction_from_list - TestNestedTensorSubclass.test_index_put_error = _test_index_put_error - TestNestedTensorSubclass.test_sdpa = _test_sdpa - TestNestedTensorSubclass.test_sdpa_autocast = _test_sdpa_autocast - TestNestedTensorSubclass.test_to_padded_tensor_compile = ( - _test_to_padded_tensor_compile + @torch._dynamo.config.patch(capture_dynamic_output_shape_ops=True) + # needed to avoid "data dependent operator: aten._local_scalar_dense.default" + @torch._dynamo.config.patch(capture_scalar_outputs=True) + @sample_skips_and_xfails(COMPILE_BACKWARD_SKIPS_AND_XFAILS) + def test_compile_backward(self, device, dtype, op): + for sample, subtest_ctx, skip_xfail_ctx in op.sample_inputs( + device=device, dtype=dtype, requires_grad=True, use_subtests=True + ): + with subtest_ctx(self), skip_xfail_ctx(self): + torch.compiler.reset() + + op_fn = op.op + + def f(*args, **kwargs): + return op_fn(*args, **kwargs) + + compiled_f = torch.compile( + f, fullgraph=True, backend="aot_eager_decomp_partition" + ) + + out_ref = f(sample.input, *sample.args, **sample.kwargs) + out_compile = compiled_f(sample.input, *sample.args, **sample.kwargs) + if op._extra_op_data.is_view: + tree_map_only( + NestedTensor, lambda x: self.assertTrue(x._is_view()), out_ref + ) + + if op.full_name in COMPARE_TENSOR_COMPONENT_EQUALITY: + self.assertEqualIgnoringNestedInts(out_compile, out_ref) + else: + self.assertEqual(out_compile, out_ref) + + inps, _ = tree_flatten((sample.input, sample.args, sample.kwargs)) + g_inps = [ + inp + for inp in inps + if isinstance(inp, torch.Tensor) and inp.requires_grad + ] + if len(g_inps) > 0: + need_grad_outs, grad_outputs = self._gen_grad_outputs(out_compile) + grads_compile = torch.autograd.grad( + need_grad_outs, + inputs=g_inps, + grad_outputs=grad_outputs, + ) + + need_grad_outs, grad_outputs = self._gen_grad_outputs(out_ref) + grads_ref = torch.autograd.grad( + need_grad_outs, + inputs=g_inps, + grad_outputs=grad_outputs, + ) + + self.assertEqualNoncontigAware(grads_compile, grads_ref) + + @torch._dynamo.config.patch(capture_dynamic_output_shape_ops=True) + # needed to avoid "data dependent operator: aten._local_scalar_dense.default" + @torch._dynamo.config.patch(capture_scalar_outputs=True) + @skipIfTorchDynamo( + "Dynamo fails on pending unbacked symints at assertEqual(ref_y[0][0][0].item(), 2)" ) + def test_nested_tensor_non_contiguous_mutation(self): + def fn(x, x0): + x[0, 0, 0] = 2 + return x + + def _inp(): + base = torch.zeros(32, 3) + v = base.t() + return torch.nested.nested_tensor_from_jagged( + v, + offsets=torch.tensor([0, 2, 3]), + ), torch.ones(2, 32) + + ref_x, ref_x0 = _inp() + ref_y = fn(ref_x, ref_x0) + + self.assertEqual(ref_y[0][0][0].item(), 2) + + y = torch.compile(fn, fullgraph=True, backend="aot_eager")(*_inp()) + self.assertEqual(y[0][0][0], 2) + + def test_nested_tensor_input_mutation_backward(self): + # See Note [AOTAutograd Tangent Subclassness for mutated inputs] + # NJT tangent is always subclass, See torch/csrc/autograd/python_function.cpp, use_zeros_like. + # This test checks that AOTD correctly guess NJT tangent as NJT. + def fn(x): + x.mul_(2) + return x + 1 + + def _inp(): + v = torch.zeros(32, 3, requires_grad=True) + return torch.nested.nested_tensor_from_jagged( + v, + offsets=torch.tensor([0, 2, 3]), + ).clone() + + ref_x = _inp() + ref_y = fn(ref_x) + ref_y.sum().backward() + + x = _inp() + y = torch.compile(fn, fullgraph=True, backend="aot_eager")(x) + y.sum().backward() + + +from torch.nested._internal.nested_int import NestedIntNode + + +class TestNestedInt(torch.testing._internal.common_utils.TestCase): + def test_comparisons(self): + a = torch.SymInt(NestedIntNode(1, 1)) + b = torch.SymInt(NestedIntNode(1, 1)) + c = torch.SymInt(NestedIntNode(2, 1)) + d = 3 + + self.assertTrue(a == a) + self.assertTrue(a == b) + self.assertFalse(a != a) + self.assertFalse(a != b) + self.assertFalse(a == c) + self.assertTrue(a != c) + + self.assertFalse(a == d) + self.assertTrue(a != d) + self.assertFalse(d == a) + self.assertTrue(d != a) + + # ge + self.assertTrue(a >= a) + self.assertTrue(a >= b) + self.assertTrue(b >= a) + with self.assertRaises(ValueError): + _ = a >= c + with self.assertRaises(ValueError): + _ = c >= a + with self.assertRaises(ValueError): + _ = c >= 3 + self.assertTrue(c >= 2) + self.assertTrue(c >= 1) + self.assertFalse(c <= 1) + + # lt + self.assertFalse(a < a) + self.assertFalse(a < b) + self.assertFalse(b < a) + with self.assertRaises(ValueError): + _ = a < c + with self.assertRaises(ValueError): + _ = c < a + with self.assertRaises(ValueError): + _ = 3 < a + with self.assertRaises(ValueError): + _ = 2 < a + self.assertTrue(a > 1) + + # le + self.assertTrue(a <= a) + self.assertTrue(b <= a) + self.assertTrue(a <= b) + with self.assertRaises(ValueError): + _ = a <= c + with self.assertRaises(ValueError): + _ = c <= a + with self.assertRaises(ValueError): + _ = 3 <= c + self.assertTrue(c >= 2) + self.assertTrue(c >= 1) + self.assertFalse(c <= 1) + + # gt + self.assertFalse(a > a) + self.assertFalse(b > a) + self.assertFalse(a > b) + with self.assertRaises(ValueError): + _ = a > c + with self.assertRaises(ValueError): + _ = c > a + with self.assertRaises(ValueError): + _ = a > 3 + with self.assertRaises(ValueError): + _ = a > 2 + self.assertTrue(a > 1) + + def test_with_factor(self): + a = torch.SymInt(NestedIntNode(1, 5)) + b = torch.SymInt(NestedIntNode(1, 10)) + # eq + self.assertFalse(a == b) + self.assertFalse(a >= b) + self.assertTrue(b >= a) + self.assertTrue(a <= b) + self.assertFalse(b <= a) + # ne + self.assertTrue(a != b) + # mul + self.assertTrue(a * 2 == b) + self.assertTrue(a * 3 >= b) + self.assertTrue(a * 2 == 2 * a) instantiate_parametrized_tests(TestNestedTensor) @@ -852,6 +9140,5 @@ def _g(nt): TestNestedTensorOpInfo, globals(), only_for="xpu", allow_xpu=True ) - if __name__ == "__main__": run_tests()