Skip to content

Commit be85310

Browse files
committed
Add tutorial 12 13 14 15 in unsolved-exercise folder and update readme
1 parent 087f832 commit be85310

6 files changed

+752
-2
lines changed

15-tutorial.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -11,14 +11,14 @@
1111
"cell_type": "markdown",
1212
"metadata": {},
1313
"source": [
14-
"This tutorial will help you utilise the module to get details about the data model of various mines. These are additional examples, besides the ones covered [here](http://intermine.org/intermine-ws-python/intermine.html#module-intermine.model).Each class (data type) has information containing references to other objects in the data model, collections of references or attribute details."
14+
"This tutorial will help you utilise the module to get details about the data model of various mines. These are additional examples, besides the ones covered [here](http://intermine.org/intermine-ws-python/intermine.html#module-intermine.model). Each class (data type) has information containing references to other objects in the data model, collections of references or attribute details."
1515
]
1616
},
1717
{
1818
"cell_type": "markdown",
1919
"metadata": {},
2020
"source": [
21-
"Let's begin with something basic, say you want to see all the fields a data type contains (including all Attributes, References and Collections listed alphabetically),then-"
21+
"Let's begin by showing all the fields a data type contains (including all Attributes, References and Collections listed alphabetically),then-"
2222
]
2323
},
2424
{

unsolved-exercises/12-tutorial.ipynb

+210
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,210 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"# Intermine-Python: Tutorial 12: More about Queries"
8+
]
9+
},
10+
{
11+
"cell_type": "markdown",
12+
"metadata": {},
13+
"source": [
14+
"Welcome to your twelfth intermine-python tutorial. "
15+
]
16+
},
17+
{
18+
"cell_type": "markdown",
19+
"metadata": {},
20+
"source": [
21+
"This tutorial will cover some more functionalities of a query. Queries are the basis of all research in InterMine and being able to manage them more effectively is always useful. "
22+
]
23+
},
24+
{
25+
"cell_type": "code",
26+
"execution_count": null,
27+
"metadata": {},
28+
"outputs": [],
29+
"source": [
30+
"from intermine.webservice import Service"
31+
]
32+
},
33+
{
34+
"cell_type": "code",
35+
"execution_count": null,
36+
"metadata": {},
37+
"outputs": [],
38+
"source": [
39+
"service = Service(\"https://www.flymine.org/query/service\")\n",
40+
"query=service.new_query()"
41+
]
42+
},
43+
{
44+
"cell_type": "code",
45+
"execution_count": null,
46+
"metadata": {},
47+
"outputs": [],
48+
"source": [
49+
"query.add_view(\"Gene.organism.name\",\"Gene.symbol\")"
50+
]
51+
},
52+
{
53+
"cell_type": "markdown",
54+
"metadata": {},
55+
"source": [
56+
"Suppose, the query is not as simple as a strict cumulative filter and the user wants combinations of constraints. For example, the user wants all genes such that the gene symbol is either ‘eve’ or ‘zen’. This can be incorporated in the following way using set_logic: "
57+
]
58+
},
59+
{
60+
"cell_type": "code",
61+
"execution_count": null,
62+
"metadata": {},
63+
"outputs": [],
64+
"source": [
65+
"gene_is_eve = query.add_constraint(\"Gene.symbol\", \"=\", \"eve\")\n",
66+
"gene_is_zen = query.add_constraint(\"Gene.symbol\", \"=\", \"zen\")\n",
67+
"query.set_logic(gene_is_eve | gene_is_zen)"
68+
]
69+
},
70+
{
71+
"cell_type": "code",
72+
"execution_count": null,
73+
"metadata": {
74+
"tags": []
75+
},
76+
"outputs": [],
77+
"source": [
78+
"for row in query.rows():\n",
79+
" print(row)"
80+
]
81+
},
82+
{
83+
"cell_type": "markdown",
84+
"metadata": {},
85+
"source": [
86+
"The query results can be converted into a dictionary in the following way: "
87+
]
88+
},
89+
{
90+
"cell_type": "code",
91+
"execution_count": null,
92+
"metadata": {
93+
"tags": []
94+
},
95+
"outputs": [],
96+
"source": [
97+
"for row in query.rows():\n",
98+
" print(row.to_d())"
99+
]
100+
},
101+
{
102+
"cell_type": "markdown",
103+
"metadata": {},
104+
"source": [
105+
"Similarly, row.to_l() can be used for conversion of the results into a list."
106+
]
107+
},
108+
{
109+
"cell_type": "markdown",
110+
"metadata": {},
111+
"source": [
112+
"count() can be used to print the total number of rows in a query: "
113+
]
114+
},
115+
{
116+
"cell_type": "code",
117+
"execution_count": null,
118+
"metadata": {},
119+
"outputs": [],
120+
"source": [
121+
"query.count()"
122+
]
123+
},
124+
{
125+
"cell_type": "markdown",
126+
"metadata": {},
127+
"source": [
128+
"to_xml() can be used to return a readable XML serialisation of the query:"
129+
]
130+
},
131+
{
132+
"cell_type": "code",
133+
"execution_count": null,
134+
"metadata": {},
135+
"outputs": [],
136+
"source": [
137+
"query.to_xml()"
138+
]
139+
},
140+
{
141+
"cell_type": "markdown",
142+
"metadata": {},
143+
"source": [
144+
"clear_view() can be used to clear the output column list:"
145+
]
146+
},
147+
{
148+
"cell_type": "code",
149+
"execution_count": null,
150+
"metadata": {
151+
"tags": []
152+
},
153+
"outputs": [],
154+
"source": [
155+
"for row in query.rows():\n",
156+
" print(row.to_l())"
157+
]
158+
},
159+
{
160+
"cell_type": "code",
161+
"execution_count": null,
162+
"metadata": {},
163+
"outputs": [],
164+
"source": [
165+
"query.clear_view()"
166+
]
167+
},
168+
{
169+
"cell_type": "code",
170+
"execution_count": null,
171+
"metadata": {
172+
"tags": []
173+
},
174+
"outputs": [],
175+
"source": [
176+
"for row in query.rows():\n",
177+
" print(row)"
178+
]
179+
},
180+
{
181+
"cell_type": "markdown",
182+
"metadata": {},
183+
"source": [
184+
"In these ways, queries can be utilized to a greater extent and produce more fruitful results. "
185+
]
186+
}
187+
],
188+
"metadata": {
189+
"anaconda-cloud": {},
190+
"kernelspec": {
191+
"display_name": "Python 3",
192+
"language": "python",
193+
"name": "python_defaultSpec_1593349094533"
194+
},
195+
"language_info": {
196+
"codemirror_mode": {
197+
"name": "ipython",
198+
"version": 3
199+
},
200+
"file_extension": ".py",
201+
"mimetype": "text/x-python",
202+
"name": "python",
203+
"nbconvert_exporter": "python",
204+
"pygments_lexer": "ipython3",
205+
"version": "3.8.3-final"
206+
}
207+
},
208+
"nbformat": 4,
209+
"nbformat_minor": 1
210+
}

unsolved-exercises/13-tutorial.ipynb

+154
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,154 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"# Intermine-Python: Tutorial 13: Query Manager"
8+
]
9+
},
10+
{
11+
"cell_type": "markdown",
12+
"metadata": {},
13+
"source": [
14+
"This tutorial will tell you about the Query Manager and how to it can be used to make better use of queries. We hope at this stage you have the 'intermine' package installed "
15+
]
16+
},
17+
{
18+
"cell_type": "markdown",
19+
"metadata": {},
20+
"source": [
21+
"We start by importing the module from InterMine package. "
22+
]
23+
},
24+
{
25+
"cell_type": "code",
26+
"execution_count": null,
27+
"metadata": {},
28+
"outputs": [],
29+
"source": [
30+
"from intermine import query_manager as qm"
31+
]
32+
},
33+
{
34+
"cell_type": "markdown",
35+
"metadata": {},
36+
"source": [
37+
"The next step will be to access the account whose query options we want to manage"
38+
]
39+
},
40+
{
41+
"cell_type": "code",
42+
"execution_count": null,
43+
"metadata": {},
44+
"outputs": [],
45+
"source": [
46+
"qm.save_mine_and_token(\"flymine\",\"41v6bat743zf06jcXek5\")"
47+
]
48+
},
49+
{
50+
"cell_type": "markdown",
51+
"metadata": {},
52+
"source": [
53+
"There are now four functions that we can utilise:"
54+
]
55+
},
56+
{
57+
"cell_type": "code",
58+
"execution_count": null,
59+
"metadata": {
60+
"tags": []
61+
},
62+
"outputs": [],
63+
"source": [
64+
"qm.post_query('<query name=\"test\" model=\"genomic\" view=\"Gene.length\\\n",
65+
" Gene.symbol\" longDescription=\"\" sortOrder=\"Gene.length asc\">\\\n",
66+
" </query>')"
67+
]
68+
},
69+
{
70+
"cell_type": "markdown",
71+
"metadata": {},
72+
"source": [
73+
"'''posts a query with name and other information as above'''"
74+
]
75+
},
76+
{
77+
"cell_type": "code",
78+
"execution_count": null,
79+
"metadata": {},
80+
"outputs": [],
81+
"source": [
82+
"qm.get_all_query_names()"
83+
]
84+
},
85+
{
86+
"cell_type": "markdown",
87+
"metadata": {},
88+
"source": [
89+
"'''returns the names of all the saved queries in user account'''"
90+
]
91+
},
92+
{
93+
"cell_type": "code",
94+
"execution_count": null,
95+
"metadata": {},
96+
"outputs": [],
97+
"source": [
98+
"qm.get_query('test')"
99+
]
100+
},
101+
{
102+
"cell_type": "markdown",
103+
"metadata": {},
104+
"source": [
105+
"'''returns information about the query whose name is 'test'''"
106+
]
107+
},
108+
{
109+
"cell_type": "code",
110+
"execution_count": null,
111+
"metadata": {},
112+
"outputs": [],
113+
"source": [
114+
"qm.delete_query('test')"
115+
]
116+
},
117+
{
118+
"cell_type": "markdown",
119+
"metadata": {},
120+
"source": [
121+
"'''deletes the query whose name is 'test' from user's account'''"
122+
]
123+
},
124+
{
125+
"cell_type": "markdown",
126+
"metadata": {},
127+
"source": [
128+
"Now that we have made dealing with queries easier, the next tutorial will have details of how we can visualise the data using Python client."
129+
]
130+
}
131+
],
132+
"metadata": {
133+
"anaconda-cloud": {},
134+
"kernelspec": {
135+
"display_name": "Python 3",
136+
"language": "python",
137+
"name": "python3"
138+
},
139+
"language_info": {
140+
"codemirror_mode": {
141+
"name": "ipython",
142+
"version": 3
143+
},
144+
"file_extension": ".py",
145+
"mimetype": "text/x-python",
146+
"name": "python",
147+
"nbconvert_exporter": "python",
148+
"pygments_lexer": "ipython3",
149+
"version": "3.8.3-final"
150+
}
151+
},
152+
"nbformat": 4,
153+
"nbformat_minor": 1
154+
}

0 commit comments

Comments
 (0)