Skip to content

Commit 2ad13ac

Browse files
authored
Modular backend - inpaint (#6643)
## Summary Code for inpainting and inpaint models handling from #6577. Separated in 2 extensions as discussed briefly before, so wait for discussion about such implementation. ## Related Issues / Discussions #6606 https://invokeai.notion.site/Modular-Stable-Diffusion-Backend-Design-Document-e8952daab5d5472faecdc4a72d377b0d ## QA Instructions Run with and without set `USE_MODULAR_DENOISE` environment. Try and compare outputs between backends in cases: - Normal generation on inpaint model - Inpainting on inpaint model - Inpainting on normal model ## Merge Plan Nope. If you think that there should be some kind of tests - feel free to add. ## Checklist - [x] _The PR has a short but descriptive title, suitable for a changelog_ - [ ] _Tests added / updated (if applicable)_ - [ ] _Documentation added / updated (if applicable)_
2 parents 171a4e6 + 693a3ea commit 2ad13ac

File tree

3 files changed

+246
-21
lines changed

3 files changed

+246
-21
lines changed

invokeai/app/invocations/denoise_latents.py

+38-21
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,7 @@
3737
from invokeai.app.util.controlnet_utils import prepare_control_image
3838
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
3939
from invokeai.backend.lora import LoRAModelRaw
40-
from invokeai.backend.model_manager import BaseModelType
40+
from invokeai.backend.model_manager import BaseModelType, ModelVariantType
4141
from invokeai.backend.model_patcher import ModelPatcher
4242
from invokeai.backend.stable_diffusion import PipelineIntermediateState
4343
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext, DenoiseInputs
@@ -60,6 +60,8 @@
6060
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
6161
from invokeai.backend.stable_diffusion.extensions.controlnet import ControlNetExt
6262
from invokeai.backend.stable_diffusion.extensions.freeu import FreeUExt
63+
from invokeai.backend.stable_diffusion.extensions.inpaint import InpaintExt
64+
from invokeai.backend.stable_diffusion.extensions.inpaint_model import InpaintModelExt
6365
from invokeai.backend.stable_diffusion.extensions.preview import PreviewExt
6466
from invokeai.backend.stable_diffusion.extensions.rescale_cfg import RescaleCFGExt
6567
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
@@ -736,7 +738,7 @@ def prep_inpaint_mask(
736738
else:
737739
masked_latents = torch.where(mask < 0.5, 0.0, latents)
738740

739-
return 1 - mask, masked_latents, self.denoise_mask.gradient
741+
return mask, masked_latents, self.denoise_mask.gradient
740742

741743
@staticmethod
742744
def prepare_noise_and_latents(
@@ -794,10 +796,6 @@ def _new_invoke(self, context: InvocationContext) -> LatentsOutput:
794796
dtype = TorchDevice.choose_torch_dtype()
795797

796798
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
797-
latents = latents.to(device=device, dtype=dtype)
798-
if noise is not None:
799-
noise = noise.to(device=device, dtype=dtype)
800-
801799
_, _, latent_height, latent_width = latents.shape
802800

803801
conditioning_data = self.get_conditioning_data(
@@ -830,21 +828,6 @@ def _new_invoke(self, context: InvocationContext) -> LatentsOutput:
830828
denoising_end=self.denoising_end,
831829
)
832830

833-
denoise_ctx = DenoiseContext(
834-
inputs=DenoiseInputs(
835-
orig_latents=latents,
836-
timesteps=timesteps,
837-
init_timestep=init_timestep,
838-
noise=noise,
839-
seed=seed,
840-
scheduler_step_kwargs=scheduler_step_kwargs,
841-
conditioning_data=conditioning_data,
842-
attention_processor_cls=CustomAttnProcessor2_0,
843-
),
844-
unet=None,
845-
scheduler=scheduler,
846-
)
847-
848831
# get the unet's config so that we can pass the base to sd_step_callback()
849832
unet_config = context.models.get_config(self.unet.unet.key)
850833

@@ -866,6 +849,36 @@ def step_callback(state: PipelineIntermediateState) -> None:
866849
if self.unet.seamless_axes:
867850
ext_manager.add_extension(SeamlessExt(self.unet.seamless_axes))
868851

852+
### inpaint
853+
mask, masked_latents, is_gradient_mask = self.prep_inpaint_mask(context, latents)
854+
# NOTE: We used to identify inpainting models by inpecting the shape of the loaded UNet model weights. Now we
855+
# use the ModelVariantType config. During testing, there was a report of a user with models that had an
856+
# incorrect ModelVariantType value. Re-installing the model fixed the issue. If this issue turns out to be
857+
# prevalent, we will have to revisit how we initialize the inpainting extensions.
858+
if unet_config.variant == ModelVariantType.Inpaint:
859+
ext_manager.add_extension(InpaintModelExt(mask, masked_latents, is_gradient_mask))
860+
elif mask is not None:
861+
ext_manager.add_extension(InpaintExt(mask, is_gradient_mask))
862+
863+
# Initialize context for modular denoise
864+
latents = latents.to(device=device, dtype=dtype)
865+
if noise is not None:
866+
noise = noise.to(device=device, dtype=dtype)
867+
denoise_ctx = DenoiseContext(
868+
inputs=DenoiseInputs(
869+
orig_latents=latents,
870+
timesteps=timesteps,
871+
init_timestep=init_timestep,
872+
noise=noise,
873+
seed=seed,
874+
scheduler_step_kwargs=scheduler_step_kwargs,
875+
conditioning_data=conditioning_data,
876+
attention_processor_cls=CustomAttnProcessor2_0,
877+
),
878+
unet=None,
879+
scheduler=scheduler,
880+
)
881+
869882
# context for loading additional models
870883
with ExitStack() as exit_stack:
871884
# later should be smth like:
@@ -905,6 +918,10 @@ def _old_invoke(self, context: InvocationContext) -> LatentsOutput:
905918
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
906919

907920
mask, masked_latents, gradient_mask = self.prep_inpaint_mask(context, latents)
921+
# At this point, the mask ranges from 0 (leave unchanged) to 1 (inpaint).
922+
# We invert the mask here for compatibility with the old backend implementation.
923+
if mask is not None:
924+
mask = 1 - mask
908925

909926
# TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets,
910927
# below. Investigate whether this is appropriate.
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,120 @@
1+
from __future__ import annotations
2+
3+
from typing import TYPE_CHECKING, Optional
4+
5+
import einops
6+
import torch
7+
from diffusers import UNet2DConditionModel
8+
9+
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
10+
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase, callback
11+
12+
if TYPE_CHECKING:
13+
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
14+
15+
16+
class InpaintExt(ExtensionBase):
17+
"""An extension for inpainting with non-inpainting models. See `InpaintModelExt` for inpainting with inpainting
18+
models.
19+
"""
20+
21+
def __init__(
22+
self,
23+
mask: torch.Tensor,
24+
is_gradient_mask: bool,
25+
):
26+
"""Initialize InpaintExt.
27+
Args:
28+
mask (torch.Tensor): The inpainting mask. Shape: (1, 1, latent_height, latent_width). Values are
29+
expected to be in the range [0, 1]. A value of 1 means that the corresponding 'pixel' should not be
30+
inpainted.
31+
is_gradient_mask (bool): If True, mask is interpreted as a gradient mask meaning that the mask values range
32+
from 0 to 1. If False, mask is interpreted as binary mask meaning that the mask values are either 0 or
33+
1.
34+
"""
35+
super().__init__()
36+
self._mask = mask
37+
self._is_gradient_mask = is_gradient_mask
38+
39+
# Noise, which used to noisify unmasked part of image
40+
# if noise provided to context, then it will be used
41+
# if no noise provided, then noise will be generated based on seed
42+
self._noise: Optional[torch.Tensor] = None
43+
44+
@staticmethod
45+
def _is_normal_model(unet: UNet2DConditionModel):
46+
"""Checks if the provided UNet belongs to a regular model.
47+
The `in_channels` of a UNet vary depending on model type:
48+
- normal - 4
49+
- depth - 5
50+
- inpaint - 9
51+
"""
52+
return unet.conv_in.in_channels == 4
53+
54+
def _apply_mask(self, ctx: DenoiseContext, latents: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
55+
batch_size = latents.size(0)
56+
mask = einops.repeat(self._mask, "b c h w -> (repeat b) c h w", repeat=batch_size)
57+
if t.dim() == 0:
58+
# some schedulers expect t to be one-dimensional.
59+
# TODO: file diffusers bug about inconsistency?
60+
t = einops.repeat(t, "-> batch", batch=batch_size)
61+
# Noise shouldn't be re-randomized between steps here. The multistep schedulers
62+
# get very confused about what is happening from step to step when we do that.
63+
mask_latents = ctx.scheduler.add_noise(ctx.inputs.orig_latents, self._noise, t)
64+
# TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already?
65+
# mask_latents = self.scheduler.scale_model_input(mask_latents, t)
66+
mask_latents = einops.repeat(mask_latents, "b c h w -> (repeat b) c h w", repeat=batch_size)
67+
if self._is_gradient_mask:
68+
threshold = (t.item()) / ctx.scheduler.config.num_train_timesteps
69+
mask_bool = mask < 1 - threshold
70+
masked_input = torch.where(mask_bool, latents, mask_latents)
71+
else:
72+
masked_input = torch.lerp(latents, mask_latents.to(dtype=latents.dtype), mask.to(dtype=latents.dtype))
73+
return masked_input
74+
75+
@callback(ExtensionCallbackType.PRE_DENOISE_LOOP)
76+
def init_tensors(self, ctx: DenoiseContext):
77+
if not self._is_normal_model(ctx.unet):
78+
raise ValueError(
79+
"InpaintExt should be used only on normal (non-inpainting) models. This could be caused by an "
80+
"inpainting model that was incorrectly marked as a non-inpainting model. In some cases, this can be "
81+
"fixed by removing and re-adding the model (so that it gets re-probed)."
82+
)
83+
84+
self._mask = self._mask.to(device=ctx.latents.device, dtype=ctx.latents.dtype)
85+
86+
self._noise = ctx.inputs.noise
87+
# 'noise' might be None if the latents have already been noised (e.g. when running the SDXL refiner).
88+
# We still need noise for inpainting, so we generate it from the seed here.
89+
if self._noise is None:
90+
self._noise = torch.randn(
91+
ctx.latents.shape,
92+
dtype=torch.float32,
93+
device="cpu",
94+
generator=torch.Generator(device="cpu").manual_seed(ctx.seed),
95+
).to(device=ctx.latents.device, dtype=ctx.latents.dtype)
96+
97+
# Use negative order to make extensions with default order work with patched latents
98+
@callback(ExtensionCallbackType.PRE_STEP, order=-100)
99+
def apply_mask_to_initial_latents(self, ctx: DenoiseContext):
100+
ctx.latents = self._apply_mask(ctx, ctx.latents, ctx.timestep)
101+
102+
# TODO: redo this with preview events rewrite
103+
# Use negative order to make extensions with default order work with patched latents
104+
@callback(ExtensionCallbackType.POST_STEP, order=-100)
105+
def apply_mask_to_step_output(self, ctx: DenoiseContext):
106+
timestep = ctx.scheduler.timesteps[-1]
107+
if hasattr(ctx.step_output, "denoised"):
108+
ctx.step_output.denoised = self._apply_mask(ctx, ctx.step_output.denoised, timestep)
109+
elif hasattr(ctx.step_output, "pred_original_sample"):
110+
ctx.step_output.pred_original_sample = self._apply_mask(ctx, ctx.step_output.pred_original_sample, timestep)
111+
else:
112+
ctx.step_output.pred_original_sample = self._apply_mask(ctx, ctx.step_output.prev_sample, timestep)
113+
114+
# Restore unmasked part after the last step is completed
115+
@callback(ExtensionCallbackType.POST_DENOISE_LOOP)
116+
def restore_unmasked(self, ctx: DenoiseContext):
117+
if self._is_gradient_mask:
118+
ctx.latents = torch.where(self._mask < 1, ctx.latents, ctx.inputs.orig_latents)
119+
else:
120+
ctx.latents = torch.lerp(ctx.latents, ctx.inputs.orig_latents, self._mask)
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,88 @@
1+
from __future__ import annotations
2+
3+
from typing import TYPE_CHECKING, Optional
4+
5+
import torch
6+
from diffusers import UNet2DConditionModel
7+
8+
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
9+
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase, callback
10+
11+
if TYPE_CHECKING:
12+
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
13+
14+
15+
class InpaintModelExt(ExtensionBase):
16+
"""An extension for inpainting with inpainting models. See `InpaintExt` for inpainting with non-inpainting
17+
models.
18+
"""
19+
20+
def __init__(
21+
self,
22+
mask: Optional[torch.Tensor],
23+
masked_latents: Optional[torch.Tensor],
24+
is_gradient_mask: bool,
25+
):
26+
"""Initialize InpaintModelExt.
27+
Args:
28+
mask (Optional[torch.Tensor]): The inpainting mask. Shape: (1, 1, latent_height, latent_width). Values are
29+
expected to be in the range [0, 1]. A value of 1 means that the corresponding 'pixel' should not be
30+
inpainted.
31+
masked_latents (Optional[torch.Tensor]): Latents of initial image, with masked out by black color inpainted area.
32+
If mask provided, then too should be provided. Shape: (1, 1, latent_height, latent_width)
33+
is_gradient_mask (bool): If True, mask is interpreted as a gradient mask meaning that the mask values range
34+
from 0 to 1. If False, mask is interpreted as binary mask meaning that the mask values are either 0 or
35+
1.
36+
"""
37+
super().__init__()
38+
if mask is not None and masked_latents is None:
39+
raise ValueError("Source image required for inpaint mask when inpaint model used!")
40+
41+
# Inverse mask, because inpaint models treat mask as: 0 - remain same, 1 - inpaint
42+
self._mask = None
43+
if mask is not None:
44+
self._mask = 1 - mask
45+
self._masked_latents = masked_latents
46+
self._is_gradient_mask = is_gradient_mask
47+
48+
@staticmethod
49+
def _is_inpaint_model(unet: UNet2DConditionModel):
50+
"""Checks if the provided UNet belongs to a regular model.
51+
The `in_channels` of a UNet vary depending on model type:
52+
- normal - 4
53+
- depth - 5
54+
- inpaint - 9
55+
"""
56+
return unet.conv_in.in_channels == 9
57+
58+
@callback(ExtensionCallbackType.PRE_DENOISE_LOOP)
59+
def init_tensors(self, ctx: DenoiseContext):
60+
if not self._is_inpaint_model(ctx.unet):
61+
raise ValueError("InpaintModelExt should be used only on inpaint models!")
62+
63+
if self._mask is None:
64+
self._mask = torch.ones_like(ctx.latents[:1, :1])
65+
self._mask = self._mask.to(device=ctx.latents.device, dtype=ctx.latents.dtype)
66+
67+
if self._masked_latents is None:
68+
self._masked_latents = torch.zeros_like(ctx.latents[:1])
69+
self._masked_latents = self._masked_latents.to(device=ctx.latents.device, dtype=ctx.latents.dtype)
70+
71+
# Do last so that other extensions works with normal latents
72+
@callback(ExtensionCallbackType.PRE_UNET, order=1000)
73+
def append_inpaint_layers(self, ctx: DenoiseContext):
74+
batch_size = ctx.unet_kwargs.sample.shape[0]
75+
b_mask = torch.cat([self._mask] * batch_size)
76+
b_masked_latents = torch.cat([self._masked_latents] * batch_size)
77+
ctx.unet_kwargs.sample = torch.cat(
78+
[ctx.unet_kwargs.sample, b_mask, b_masked_latents],
79+
dim=1,
80+
)
81+
82+
# Restore unmasked part as inpaint model can change unmasked part slightly
83+
@callback(ExtensionCallbackType.POST_DENOISE_LOOP)
84+
def restore_unmasked(self, ctx: DenoiseContext):
85+
if self._is_gradient_mask:
86+
ctx.latents = torch.where(self._mask > 0, ctx.latents, ctx.inputs.orig_latents)
87+
else:
88+
ctx.latents = torch.lerp(ctx.inputs.orig_latents, ctx.latents, self._mask)

0 commit comments

Comments
 (0)