-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnlp_train.py
181 lines (140 loc) · 6.23 KB
/
nlp_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
'''Train CIFAR10 with PyTorch. Took parts of the code from: https://github.com/kuangliu/pytorch-cifar'''
import os
#os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
from utils import seed_everything
seed_everything(1)
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data import Subset
import torchvision
import torchvision.transforms as transforms
import numpy as np
from sklearn.utils import shuffle
import argparse
from utils import progress_bar
from argparse import ArgumentParser
def eval_on_data(dataloader, net):
net.eval()
correct = 0
total = 0
y_true = []
y_pred = []
y_pred_beliefs = []
print(vars(dataloader))
with torch.no_grad():
for batch_idx, batch in enumerate(dataloader):
batch = {k: v.to(device) for k, v in batch.items()}
batch["labels"] = batch["label"]
del batch["label"]
targets = batch["labels"]
outputs = net(**batch).logits
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
y_pred.append(predicted)
y_true.append(targets)
y_pred_beliefs.append(outputs)
progress_bar(batch_idx, len(dataloader), 'Acc: %.3f%% (%d/%d)'
% (100.*correct/total, correct, total))
res = torch.cat(y_true, dim=0), torch.cat(y_pred, dim=0), torch.cat(y_pred_beliefs, dim=0)
print(res[0].shape, res[1].shape, res[2].shape)
return res
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(device)
datasets = {
"yelp_review_full": {
"num_classes": 5,
},
"yelp_polarity": {
"num_classes": 2,
},
"imdb": {
"num_classes": 2,
},
"emotion": {
"num_classes": 6,
}
}
batch_size = 16
def train_and_save(data_name, num_devices, num_repeats, num_epochs):
seed_everything(1)
dataset = datasets[data_name]
from datasets import load_dataset
from transformers import AutoTokenizer
from transformers import AutoModelForSequenceClassification
from transformers import Trainer
from transformers import TrainingArguments
from transformers import AutoModelForSequenceClassification
import numpy as np
from datasets import load_metric
metric = load_metric("accuracy")
model_name = "distilbert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
raw_datasets = load_dataset(data_name)
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True)
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
tokenized_datasets.set_format("torch")
print(tokenized_datasets.keys())
trainset = tokenized_datasets["train"]
testset = tokenized_datasets["test"]
shuffled_indices = shuffle(np.arange(len(trainset)))
num_traindata = int(len(shuffled_indices)*0.9)
val_inds = shuffled_indices[num_traindata:]
valset = trainset.select(val_inds)
valset.set_format("torch", columns=['input_ids', 'attention_mask', 'label'])
testset.set_format("torch", columns=['input_ids', 'attention_mask', 'label'])
trainset.set_format("torch", columns=['input_ids', 'attention_mask', 'label'])
valloader = torch.utils.data.DataLoader(valset, batch_size=batch_size, shuffle=False)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False)
for seed_idx in range(num_repeats):
seed_everything(seed_idx)
train_indices = np.array_split(shuffled_indices[:num_traindata], num_devices)
for device_idx, inds in enumerate(train_indices):
seed_everything(seed_idx)
device_trainset = trainset.select(inds)
trainloader = torch.utils.data.DataLoader(device_trainset, batch_size=batch_size, shuffle=False)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=dataset["num_classes"])
training_args = TrainingArguments(output_dir=f"tmp/{data_name}_{seed_idx}_{device_idx}", save_strategy="no", seed=seed_idx, report_to="none", per_device_train_batch_size=batch_size, num_train_epochs=num_epochs)
trainer = Trainer(
model=model, args=training_args, train_dataset=device_trainset
)
trainer.train()
#y_train_true, y_train_pred, y_train_pred_beliefs = eval_on_data(trainloader, model)
y_val_true, y_val_pred, y_val_pred_beliefs = eval_on_data(valloader, model)
y_test_true, y_test_pred, y_test_pred_beliefs = eval_on_data(testloader, model)
res = {
"model": model.state_dict(),
"inds": inds,
"device_idx": device_idx,
#"y_train_true": y_train_true,
#"y_train_pred": y_train_pred,
#"y_train_pred_beliefs": y_train_pred_beliefs,
"y_val_true": y_val_true,
"y_val_pred": y_val_pred,
"y_val_pred_beliefs": y_val_pred_beliefs,
"y_test_true": y_test_true,
"y_test_pred": y_test_pred,
"y_test_pred_beliefs": y_test_pred_beliefs
}
targetdir = f"results/{data_name}_{num_devices}devices_seed{seed_idx}"
if not os.path.isdir(targetdir):
os.makedirs(targetdir)
torch.save(res, f'{targetdir}/{device_idx}.pth')
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--data", choices=datasets.keys(), default="yelp_review_full")
parser.add_argument("--num_repeats", default=5, type=int)
parser.add_argument("--num_devices", default=20, type=int)
parser.add_argument("--num_epochs", default=50, type=int)
cfg = vars(parser.parse_args())
train_and_save(cfg["data"], cfg["num_devices"], cfg["num_repeats"], cfg["num_epochs"])
"""
python nlp_train.py --data emotion --num_repeats 5 --num_devices 20
python nlp_train.py --data imdb --num_repeats 5 --num_devices 20
## TOO LONG
python nlp_train.py --data yelp_review_full --num_repeats 5 --num_devices 20
"""