-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathtest_jled.cpp
615 lines (517 loc) · 20.1 KB
/
test_jled.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
// JLed Unit tests (runs on host)
// Copyright 2017-2022 Jan Delgado [email protected]
#include <jled_base.h> // NOLINT
#include <iostream>
#include <limits>
#include <map>
#include <utility>
#include <vector>
#include "catch2/catch_amalgamated.hpp"
#include "hal_mock.h" // NOLINT
using jled::BlinkBrightnessEvaluator;
using jled::BreatheBrightnessEvaluator;
using jled::BrightnessEvaluator;
using jled::CandleBrightnessEvaluator;
using jled::ConstantBrightnessEvaluator;
using jled::TJLed;
// TestJLed is a JLed class using the HalMock for tests. This allows to
// test the code abstracted from the actual hardware in use.
class TestJLed : public TJLed<HalMock, TestJLed> {
using TJLed<HalMock, TestJLed>::TJLed;
};
// instanciate for test coverage measurement
template class TJLed<HalMock, TestJLed>;
using ByteVec = std::vector<uint8_t>;
class MockBrightnessEvaluator : public BrightnessEvaluator {
ByteVec values_;
mutable uint16_t count_ = 0;
public:
explicit MockBrightnessEvaluator(ByteVec values) : values_(values) {}
uint16_t Count() const { return count_; }
uint16_t Period() const { return values_.size(); }
uint8_t Eval(uint32_t t) const {
CHECK(t < values_.size());
count_++;
return values_[t];
}
};
// expected result when a JLed object is updated: return value
// of Update() and the current brightness
using UpdateResult = std::pair<bool, uint8_t>;
using UpdateResults = std::vector<UpdateResult>;
// helper to check if a led evaluates to given sequence. TODO use a catch
// matcher
template <class T>
void check_led(T *led, const UpdateResults &expected) {
uint32_t time = 0;
for (const auto ¤t : expected) {
led->Hal().SetMillis(time);
const auto updated = led->Update();
const auto val = led->Hal().Value();
UNSCOPED_INFO("t=" << time << ", actual=("
<< (updated ? "true" : "false") << ", " << (int)val
<< "), expected=("
<< (current.first ? "true" : "false") << ", "
<< (int)current.second << ")");
CHECK(current.first == updated);
CHECK(current.second == val);
time++;
}
}
TEST_CASE("jled without effect does nothing", "[jled]") {
auto led = TestJLed(1);
CHECK(!led.Update());
}
TEST_CASE("On/Off function configuration", "[jled]") {
// class used to access proteced fields during test
class TestableJLed : public TestJLed {
public:
using TestJLed::TestJLed;
static void test() {
SECTION(
"using On() effect uses a BrightnessEval that turns the LED "
"on") {
TestableJLed jled(1);
jled.On();
REQUIRE(dynamic_cast<ConstantBrightnessEvaluator *>(
jled.brightness_eval_) != nullptr);
CHECK(jled.brightness_eval_->Eval(0) == 255);
}
SECTION(
"using Off() effect uses a BrightnessEval that turns the LED "
"off") {
TestableJLed jled(1);
jled.Off();
REQUIRE(dynamic_cast<ConstantBrightnessEvaluator *>(
jled.brightness_eval_) != nullptr);
CHECK(jled.brightness_eval_->Eval(0) == 0);
}
SECTION("using Set() allows to set custom brightness level") {
TestableJLed jled(1);
jled.Set(123);
REQUIRE(dynamic_cast<ConstantBrightnessEvaluator *>(
jled.brightness_eval_) != nullptr);
CHECK(jled.brightness_eval_->Eval(0) == 123);
}
SECTION("using Set(0) allows to set custom turn LED off") {
TestableJLed jled(1);
jled.Set(0);
REQUIRE(dynamic_cast<ConstantBrightnessEvaluator *>(
jled.brightness_eval_) != nullptr);
CHECK(jled.brightness_eval_->Eval(0) == 0);
}
}
};
TestableJLed::test();
}
TEST_CASE("using Breathe() configures BreatheBrightnessEvaluator", "[jled]") {
class TestableJLed : public TestJLed {
public:
using TestJLed::TestJLed;
static void test() {
TestableJLed jled(1);
jled.Breathe(100, 200, 300);
REQUIRE(dynamic_cast<BreatheBrightnessEvaluator *>(
jled.brightness_eval_) != nullptr);
auto eval = dynamic_cast<BreatheBrightnessEvaluator *>(
jled.brightness_eval_);
CHECK(100 == eval->DurationFadeOn());
CHECK(200 == eval->DurationOn());
CHECK(300 == eval->DurationFadeOff());
}
};
TestableJLed::test();
}
TEST_CASE("using Candle() configures CandleBrightnessEvaluator", "[jled]") {
class TestableJLed : public TestJLed {
public:
using TestJLed::TestJLed;
static void test() {
TestableJLed jled(1);
jled.Candle(1, 2, 3);
REQUIRE(dynamic_cast<CandleBrightnessEvaluator *>(
jled.brightness_eval_) != nullptr);
}
};
TestableJLed::test();
}
TEST_CASE("using Fadeon(), FadeOff() configures Fade-BrightnessEvaluators",
"[jled]") {
class TestableJLed : public TestJLed {
public:
using TestJLed::TestJLed;
static void test() {
SECTION("FadeOff() initializes with BreatheBrightnessEvaluator") {
TestableJLed jled(1);
jled.FadeOff(100);
REQUIRE(dynamic_cast<BreatheBrightnessEvaluator *>(
jled.brightness_eval_) != nullptr);
auto eval = dynamic_cast<BreatheBrightnessEvaluator *>(
jled.brightness_eval_);
CHECK(0 == eval->DurationFadeOn());
CHECK(0 == eval->DurationOn());
CHECK(100 == eval->DurationFadeOff());
}
SECTION("FadeOn() initializes with BreatheBrightnessEvaluator") {
TestableJLed jled(1);
jled.FadeOn(100);
REQUIRE(dynamic_cast<BreatheBrightnessEvaluator *>(
jled.brightness_eval_) != nullptr);
auto eval = dynamic_cast<BreatheBrightnessEvaluator *>(
jled.brightness_eval_);
CHECK(100 == eval->DurationFadeOn());
CHECK(0 == eval->DurationOn());
CHECK(0 == eval->DurationFadeOff());
}
}
};
TestableJLed::test();
}
TEST_CASE("using Fade() configures BreatheBrightnessEvaluator", "[jled]") {
class TestableJLed : public TestJLed {
public:
using TestJLed::TestJLed;
static void test() {
SECTION("fade with from < to") {
TestableJLed jled(1);
jled.Fade(100, 200, 300); // from, to, duration
REQUIRE(dynamic_cast<BreatheBrightnessEvaluator *>(
jled.brightness_eval_) != nullptr);
auto eval = dynamic_cast<BreatheBrightnessEvaluator *>(
jled.brightness_eval_);
CHECK(300 == eval->DurationFadeOn());
CHECK(0 == eval->DurationOn());
CHECK(0 == eval->DurationFadeOff());
CHECK(100 == static_cast<int>(eval->From()));
CHECK(200 == static_cast<int>(eval->To()));
}
SECTION("fade with from >= to") {
TestableJLed jled(1);
jled.Fade(200, 100, 300);
REQUIRE(dynamic_cast<BreatheBrightnessEvaluator *>(
jled.brightness_eval_) != nullptr);
auto eval = dynamic_cast<BreatheBrightnessEvaluator *>(
jled.brightness_eval_);
CHECK(0 == eval->DurationFadeOn());
CHECK(0 == eval->DurationOn());
CHECK(300 == eval->DurationFadeOff());
CHECK(100 == static_cast<int>(eval->From()));
CHECK(200 == static_cast<int>(eval->To()));
}
}
};
TestableJLed::test();
}
TEST_CASE("UserFunc() allows to use a custom brightness evaluator", "[jled]") {
class TestableJLed : public TestJLed {
public:
using TestJLed::TestJLed;
static void test() {
TestableJLed jled(1);
auto cust = MockBrightnessEvaluator(ByteVec{});
jled.UserFunc(&cust);
REQUIRE(dynamic_cast<MockBrightnessEvaluator *>(
jled.brightness_eval_) != nullptr);
}
};
TestableJLed::test();
}
TEST_CASE("ConstantBrightnessEvaluator returns constant provided value",
"[jled]") {
auto cbZero = ConstantBrightnessEvaluator(0);
CHECK(1 == cbZero.Period());
CHECK(0 == cbZero.Eval(0));
CHECK(0 == cbZero.Eval(1000));
auto cbFull = ConstantBrightnessEvaluator(255);
CHECK(1 == cbFull.Period());
CHECK(255 == cbFull.Eval(0));
CHECK(255 == cbFull.Eval(1000));
}
TEST_CASE(
"BlinkBrightnessEvaluator calculates switches between on and off in given "
"time frames",
"[jled]") {
auto eval = BlinkBrightnessEvaluator(10, 5);
CHECK(10 + 5 == eval.Period());
CHECK(255 == eval.Eval(0));
CHECK(255 == eval.Eval(9));
CHECK(0 == eval.Eval(10));
CHECK(0 == eval.Eval(14));
}
TEST_CASE("CandleBrightnessEvaluator simulated candle flickering", "[jled]") {
auto eval = CandleBrightnessEvaluator(7, 15, 1000);
CHECK(1000 == eval.Period());
CHECK(eval.Eval(0) > 0);
CHECK(eval.Eval(999) > 0);
}
TEST_CASE(
"BreatheEvaluator evaluates to bell curve distributed brightness curve",
"[jled]") {
auto eval = BreatheBrightnessEvaluator(100, 200, 300);
CHECK(100 + 200 + 300 == eval.Period());
const std::map<uint32_t, uint8_t> test_values = {
{0, 0}, {50, 68}, {80, 198}, {99, 255}, {100, 255},
{299, 255}, {300, 255}, {399, 138}, {499, 26}, {599, 0}};
for (const auto &x : test_values) {
INFO("t=" << x.first);
CHECK((int)x.second == (int)eval.Eval(x.first));
}
}
TEST_CASE("Forever flag is initially set to false", "[jled]") {
TestJLed jled(1);
CHECK_FALSE(jled.IsForever());
}
TEST_CASE("Forever flag is set by call to Forever()", "[jled]") {
TestJLed jled(1);
jled.Forever();
CHECK(jled.IsForever());
}
TEST_CASE("dont evaluate twice during one time tick", "[jled]") {
auto eval = MockBrightnessEvaluator(ByteVec{0, 1, 2});
TestJLed jled = TestJLed(1).UserFunc(&eval);
jled.Update(0, nullptr);
CHECK(eval.Count() == 1);
jled.Update(0, nullptr);
CHECK(eval.Count() == 1);
jled.Update(1);
CHECK(eval.Count() == 2);
}
TEST_CASE("Handles millis overflow during effect", "[jled]") {
TestJLed jled = TestJLed(10);
// Set time close to overflow
auto time = std::numeric_limits<uint32_t>::max() - 25;
CHECK_FALSE(jled.Update(time));
// Start fade off
jled.FadeOff(100);
CHECK(jled.Update(time));
CHECK(jled.IsRunning());
CHECK(jled.Hal().Value() > 0);
// Set time after overflow, before effect ends
CHECK(jled.Update(time + 50));
CHECK(jled.IsRunning());
CHECK(jled.Hal().Value() > 0);
// Set time after effect ends
CHECK_FALSE(jled.Update(time + 150));
CHECK_FALSE(jled.IsRunning());
CHECK(0 == jled.Hal().Value());
}
TEST_CASE("Update returns last written value if requested", "[jled]") {
auto eval = MockBrightnessEvaluator(ByteVec{0, 10});
int16_t lastVal = -1;
TestJLed jled = TestJLed(1).UserFunc(&eval);
jled.Update(0, &lastVal);
CHECK(lastVal == 0);
jled.Update(1, &lastVal);
CHECK(lastVal == 10);
}
TEST_CASE("Update doesn't change last value ptr if not updated", "[jled]") {
auto eval = MockBrightnessEvaluator(ByteVec{0, 10});
int16_t lastVal = -1;
TestJLed jled = TestJLed(1).UserFunc(&eval).DelayBefore(1);
jled.Update(0, &lastVal);
CHECK(lastVal == -1);
jled.Update(5, &lastVal);
CHECK(lastVal == 10);
lastVal = -1;
jled.Update(5, &lastVal);
CHECK(lastVal == -1);
}
TEST_CASE("Stop() stops the effect", "[jled]") {
auto eval = MockBrightnessEvaluator(ByteVec{255, 255, 255, 0});
TestJLed jled = TestJLed(10).UserFunc(&eval);
REQUIRE(jled.IsRunning());
jled.Update();
jled.Stop();
CHECK(!jled.IsRunning());
}
TEST_CASE("default Stop() sets the brightness to minBrightness", "[jled]") {
auto eval = MockBrightnessEvaluator(ByteVec{100, 0});
TestJLed jled = TestJLed(10).UserFunc(&eval).MinBrightness(50);
jled.Update();
REQUIRE(130 ==
static_cast<int>(jled.Hal().Value())); // 100 scaled to [50,255]
jled.Stop();
CHECK(50 == static_cast<int>(jled.Hal().Value()));
}
TEST_CASE("Stop(FULL_OFF) sets the brightness to 0", "[jled]") {
auto eval = MockBrightnessEvaluator(ByteVec{100, 0});
TestJLed jled = TestJLed(10).UserFunc(&eval).MinBrightness(50);
jled.Update();
REQUIRE(130 ==
static_cast<int>(jled.Hal().Value())); // 100 scaled to [50,255]
jled.Stop(TestJLed::eStopMode::FULL_OFF);
CHECK(0 == static_cast<int>(jled.Hal().Value()));
}
TEST_CASE("Stop(KEEP_CURRENT) keeps the last brightness level", "[jled]") {
auto eval = MockBrightnessEvaluator(ByteVec{100, 101});
TestJLed jled = TestJLed(10).UserFunc(&eval).MinBrightness(50);
jled.Update();
REQUIRE(130 ==
static_cast<int>(jled.Hal().Value())); // 100 scaled to [50,255]
jled.Stop(TestJLed::eStopMode::KEEP_CURRENT);
CHECK(130 == static_cast<int>(jled.Hal().Value()));
}
TEST_CASE("LowActive() inverts signal", "[jled]") {
auto eval = MockBrightnessEvaluator(ByteVec{0, 255});
TestJLed jled = TestJLed(1).UserFunc(&eval).LowActive();
CHECK(jled.IsLowActive());
jled.Update(0, nullptr);
CHECK(255 == jled.Hal().Value());
jled.Update(1);
CHECK(0 == jled.Hal().Value());
}
TEST_CASE("effect with repeat 2 repeats sequence once", "[jled]") {
auto eval = MockBrightnessEvaluator(ByteVec{10, 20});
TestJLed jled = TestJLed(10).UserFunc(&eval).Repeat(2);
typedef UpdateResult u;
const UpdateResults expected = {u{true, 10}, u{true, 20}, u{true, 10},
u{false, 20}, u{false, 20}, u{false, 20}};
check_led(&jled, expected);
}
TEST_CASE("effect with delay after delays start of next iteration", "[jled]") {
auto eval = MockBrightnessEvaluator(ByteVec{10, 20});
TestJLed jled = TestJLed(10).UserFunc(&eval).Repeat(2).DelayAfter(2);
typedef UpdateResult u;
const UpdateResults expected = {
u{true, 10}, u{true, 20}, u{true, 20}, u{true, 20}, u{true, 10},
u{true, 20}, u{true, 20}, u{false, 20}, u{false, 20}, u{false, 20}};
check_led(&jled, expected);
}
TEST_CASE("effect with delay before has delayed start ", "[jled]") {
auto eval = MockBrightnessEvaluator(ByteVec{10, 20});
TestJLed jled = TestJLed(10).UserFunc(&eval).DelayBefore(2);
typedef UpdateResult u;
const UpdateResults expected = {u{true, 0}, u{true, 0}, u{true, 10},
u{false, 20}, u{false, 20}, u{false, 20}};
check_led(&jled, expected);
}
TEST_CASE("After calling Forever() the effect is repeated over and over again ",
"[jled]") {
auto eval = MockBrightnessEvaluator(ByteVec{10, 20});
TestJLed jled = TestJLed(10).UserFunc(&eval).Forever();
typedef UpdateResult u;
const UpdateResults expected = {u{true, 10}, u{true, 20}, u{true, 10},
u{true, 20}, u{true, 10}, u{true, 20}};
check_led(&jled, expected);
}
TEST_CASE("The Hal object provided in the ctor is used during update",
"[jled]") {
auto eval = MockBrightnessEvaluator(ByteVec{10, 20});
TestJLed jled = TestJLed(HalMock(123)).UserFunc(&eval);
CHECK(jled.Hal().Pin() == 123);
}
TEST_CASE("Update returns true while updating, else false", "[jled]") {
auto eval = MockBrightnessEvaluator(ByteVec{10, 20});
TestJLed jled = TestJLed(10).UserFunc(&eval);
// Update returns FALSE on last step and beyond, else TRUE
CHECK(jled.Update(0, nullptr));
// when effect is done, we expect still false to be returned
CHECK_FALSE(jled.Update(1));
CHECK_FALSE(jled.Update(2));
}
TEST_CASE("After Reset() the effect can be restarted", "[jled]") {
auto eval = MockBrightnessEvaluator(ByteVec{10, 20});
TestJLed jled = TestJLed(10).UserFunc(&eval);
typedef UpdateResult u;
const UpdateResults expected = {u{true, 10}, u{false, 20}, u{false, 20},
u{false, 20}};
check_led(&jled, expected);
// after Reset() effect starts over
jled.Reset();
check_led(&jled, expected);
}
TEST_CASE("Changing the effect resets object and starts over", "[jled]") {
auto eval = MockBrightnessEvaluator(ByteVec{10, 20});
TestJLed jled = TestJLed(10).UserFunc(&eval);
typedef UpdateResult u;
const UpdateResults expected = {u{true, 10}, u{false, 20}, u{false, 20}};
check_led(&jled, expected);
// expect to start over after changing effect.
jled.UserFunc(&eval);
check_led(&jled, expected);
}
TEST_CASE("Max brightness level is initialized to 255", "[jled]") {
TestJLed jled(10);
CHECK(255 == jled.MaxBrightness());
}
TEST_CASE("Previously max brightness level can be read back", "[jled]") {
TestJLed jled(10);
jled.MaxBrightness(100);
CHECK(100 == jled.MaxBrightness());
}
TEST_CASE("Min brightness level is initialized to 0", "[jled]") {
TestJLed jled(10);
CHECK(0 == jled.MinBrightness());
}
TEST_CASE("Previously set min brightness level can be read back", "[jled]") {
TestJLed jled(10);
jled.MinBrightness(100);
CHECK(100 == jled.MinBrightness());
}
TEST_CASE(
"Setting min and max brightness levels scales evaluated effect values",
"[jled]") {
class TestableJLed : public TestJLed {
public:
using TestJLed::TestJLed;
static void test() {
TestableJLed jled(1);
auto eval = MockBrightnessEvaluator(ByteVec{0, 128, 255});
jled.UserFunc(&eval).MinBrightness(100).MaxBrightness(200);
jled.Update(0, nullptr);
CHECK(100 == jled.Hal().Value());
jled.Update(2, nullptr);
CHECK(200 == jled.Hal().Value());
}
};
TestableJLed::test();
};
TEST_CASE("timeChangeSinceLastUpdate detects time changes", "[jled]") {
class TestableJLed : public TestJLed {
public:
using TestJLed::TestJLed;
static void test() {
TestableJLed jled(1);
jled.trackLastUpdateTime(1000);
CHECK_FALSE(jled.timeChangedSinceLastUpdate(1000));
CHECK(jled.timeChangedSinceLastUpdate(1001));
}
};
TestableJLed::test();
}
TEST_CASE("random generator delivers pseudo random numbers", "[rand]") {
jled::rand_seed(0);
CHECK(0x59 == jled::rand8());
CHECK(0x159 >> 1 == jled::rand8());
}
TEST_CASE("scaling a value with factor 0 scales it to 0", "[scale8]") {
CHECK(0 == jled::scale8(0, 0));
CHECK(0 == jled::scale8(255, 0));
}
TEST_CASE("scaling a value with factor 127 halfes the value", "[scale8]") {
CHECK(0 == jled::scale8(0, 128));
CHECK(50 == jled::scale8(100, 128));
CHECK(128 == jled::scale8(255, 128));
}
TEST_CASE("scaling a value with factor 255 returns original value",
"[scale8]") {
CHECK(0 == jled::scale8(0, 255));
CHECK(127 == jled::scale8(127, 255));
CHECK(255 == jled::scale8(255, 255));
}
TEST_CASE("lerp8by8 interpolates a byte into the given interval",
"[lerp8by8]") {
CHECK(0 == (int)(jled::lerp8by8(0, 0, 255)));
CHECK(0 == (int)(jled::lerp8by8(255, 0, 0)));
CHECK(255 == (int)(jled::lerp8by8(255, 0, 255)));
CHECK(100 == (int)(jled::lerp8by8(0, 100, 255)));
CHECK(100 == (int)(jled::lerp8by8(0, 100, 110)));
CHECK(255 == (int)(jled::lerp8by8(255, 100, 255)));
CHECK(200 == (int)(jled::lerp8by8(255, 100, 200)));
}
TEST_CASE("invlerp8by8 is the inverse of lerp8by8", "[invlerp8by8]") {
CHECK(0 == (int)(jled::invlerp8by8(0, 0, 255)));
CHECK(255 == (int)(jled::invlerp8by8(255, 0, 255)));
CHECK(0 == (int)(jled::invlerp8by8(100, 100, 200)));
CHECK(255 == (int)(jled::invlerp8by8(200, 100, 200)));
}