-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathratingsNetwork.py
162 lines (142 loc) · 5.15 KB
/
ratingsNetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import numpy as np
import collections
import random
import wordVectorHelpers
users = {}
friend_ratings = {}
trainingRatings = set()
testRatings = set()
crossValRatings = []
# cosSimThreshold = 0.93
# print "Cosine Simularity Threshold: ", cosSimThreshold
def parseUserFile():
f = open('graphAttributesWaterloo.txt', 'r')
numFriends, friendsPruned, numUsers = 0, 0, 0
for line in f:
u, r, f, w = line.split("|")
ratings = set()
ratingsVec = r.split(',')
for i in range(0, len(ratingsVec), 2):
crossValRatings.append((u, ratingsVec[i], int(ratingsVec[i+1])))
# if random.random() > 0.8:
# testRatings.add((u, ratingsVec[i], int(ratingsVec[i+1])))
# else:
# trainingRatings.add((u, ratingsVec[i], int(ratingsVec[i+1])))
ratings.add((ratingsVec[i], int(ratingsVec[i+1])))
friends = set(f.split(','))
# friendCandidates = set(f.split(','))
# numFriends += len(friendCandidates)
# friends = set()
# for friend in friendCandidates:
# cosSim = wordVectorHelpers.getCosSim(u, friend)
# if cosSim is not None and cosSim >= cosSimThreshold:
# friends.add(friend)
# else:
# friendsPruned += 1
# numUsers += 1
# words = {}
# wordsVec = w.split(',')
# for i in range(0, len(wordsVec) - 1, 2):
# words[wordsVec[i]] = wordsVec[i+1]
users[u] = {}
users[u]['ratings'] = ratings
users[u]['friends'] = friends
# users[u]['words'] = words
# print "Average prunes: %s" % (friendsPruned / float(numUsers))
# print "Average friends: %s" % (numFriends / float(numUsers))
eta = 0.05
l = 0.4
k = 20
alpha = 0
user_bias = collections.defaultdict(int)
item_bias = collections.defaultdict(int)
friend_bias = collections.defaultdict(int)
p = collections.defaultdict(lambda: [random.random() * (0.6) for _ in range(k)])
q = collections.defaultdict(lambda: [random.random() * (0.6) for _ in range(k)])
def getAlpha():
total = 0
for user, item, rating in trainingRatings:
total += rating
global alpha
alpha = float(total) / len(trainingRatings)
def getFriendRatings(threshold):
for user in users:
for item, rating in users[user]['ratings']:
total = 0
num = 0
for friend in users[user]['friends']:
if friend and wordVectorHelpers.getCosSim(user, friend) > threshold:
for friend_item, friend_rating in users[friend]['ratings']:
if item == friend_item:
total += friend_rating #* wordVectorHelpers.getCosSim(user, friend)
# num += wordVectorHelpers.getCosSim(user, friend) + 0.05
num += 1
friend_ratings[(user, item)] = 0 if total == 0 else total/float(num) - alpha
def predict(user, item):
return alpha + user_bias[user] + item_bias[item] + np.dot(p[user], q[item]) \
+ friend_bias[user]*friend_ratings[(user, item)]
def gradientDescent():
global p, q
for x in range(100):
for user, item, rating in trainingRatings:
error = rating - predict(user, item)
user_bias[user] += eta * (error - l * user_bias[user])
user_bias[item] += eta * (error - l * user_bias[item])
friend_bias[user] += eta * (error * friend_ratings[(user, item)] - l * friend_bias[user])
for i in range(k):
p[user][i] += eta * (error * q[item][i] - l * p[user][i])
q[item][i] += eta * (error * p[user][i] - l * q[item][i])
def testError():
error = 0
for user, item, rating in testRatings:
error += (rating - predict(user, item))**2
print "TEST MSE: ", error/len(testRatings)
return error/len(testRatings)
def trainingError():
error = 0
for user, item, rating in trainingRatings:
error += (rating - predict(user, item))**2
print "TRAINING MSE: ", error/len(trainingRatings)
def baselineError():
error = 0
for user, item, rating in trainingRatings:
error += (rating - alpha)**2
print "BASELINE MSE: ", error/len(trainingRatings)
def reset():
global user_bias, item_bias, friend_bias, p, q
user_bias = collections.defaultdict(int)
item_bias = collections.defaultdict(int)
friend_bias = collections.defaultdict(int)
p = collections.defaultdict(lambda: [random.random() * (0.6) for _ in range(k)])
q = collections.defaultdict(lambda: [random.random() * (0.6) for _ in range(k)])
def crossValidate():
msevals = []
global testRatings, trainingRatings
random.shuffle(crossValRatings)
numSamples = len(crossValRatings)
sectionSize = numSamples / 10
startIndices = range(0, numSamples, sectionSize)
startIndices = startIndices[:10]
for i in startIndices:
print "Section %d:" % (i / sectionSize)
endIndex = i + sectionSize if i != startIndices[-1] else numSamples
testRatings = set(crossValRatings[i:endIndex])
trainingRatings = set(crossValRatings[0:i] + crossValRatings[endIndex:])
reset()
getAlpha()
getFriendRatings(0.9)
gradientDescent()
msevals.append(testError())
trainingError()
baselineError()
print "CROSS VALIDATION MEAN MSE: ", np.mean(msevals)
print "CROSS VALIDATION STD MSE: ", np.std(msevals)
if __name__ == '__main__':
parseUserFile()
crossValidate()
# getAlpha()
# getFriendRatings(0.9)
# gradientDescent()
# testError()
# trainingError()
# baselineError()