-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSaveBestModelCallback.py
executable file
·38 lines (27 loc) · 1.1 KB
/
SaveBestModelCallback.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import os
import pandas as pd
from sklearn.metrics import recall_score
from constants import EMOTIONS
from rl.callbacks import Callback
class SaveBestModelCallback(Callback):
def __init__(self, model_save_name: str, model_dir: str, ):
self.step_inferences = []
self.best_uar = 0
self.model_save_name = model_save_name
self.model_dir = model_dir
def on_episode_begin(self, episode, logs):
self.step_inferences = []
def on_episode_end(self, episode, logs):
df = pd.DataFrame(self.step_inferences)
UAR = recall_score(df['ground_truth'].to_numpy(), df['inference'].to_numpy(), average='macro')
if UAR > self.best_uar:
self.best_uar = UAR
save_dir = f'{self.model_dir}/{str(episode)}'
os.makedirs(save_dir)
self.model.model.save(save_dir + "/" + self.model_save_name)
del df
def on_step_end(self, step, logs):
self.step_inferences.append({
'ground_truth': EMOTIONS[int(logs['info']['ground_truth'])],
'inference': EMOTIONS[int(logs['action'])]
})