-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
167 lines (145 loc) · 6.41 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from optimizer import SoftmaxCCE, StochasticGradientDecent
from layer import DenseLayer
from visualisations import Plotter
from activation import ReLU
from loss import Accuracy
from copy import deepcopy
import pickle
import numpy as np
class Model:
def __init__(self, learning_rate=0.1, decay=0.01, momentum=0.9):
self.layers = []
self.activation_functions = []
self.learning_rate = learning_rate
self.decay = decay
self.momentum = momentum
self.optimizer = StochasticGradientDecent(learning_rate=learning_rate, decay=decay, momentum=momentum)
self.accuracy = Accuracy()
self.loss_activation = SoftmaxCCE()
self.plot = Plotter()
def add_layer(self, n_inputs, n_neurons, L1w=0., L1b=0., L2w=0., L2b=0.):
self.layers.append(DenseLayer(n_inputs, n_neurons, L1w, L1b, L2w, L2b))
def link_nodes(self):
"""
Links nodes in a linked list data structure.
"""
self.activation_functions = [ReLU() for _ in range(len(self.layers) - 1)]
prev_activation = None
for layer, activation in zip(self.layers, self.activation_functions):
if prev_activation is not None:
prev_activation.next = layer
layer.prev = prev_activation
layer.next = activation
activation.prev = layer
prev_activation = activation
# Final layer
self.layers[-1].prev = prev_activation
prev_activation.next = self.layers[-1]
self.layers[-1].next = self.loss_activation
self.loss_activation.prev = self.layers[-1]
def forward(self, layer, inputs, y, predict=False):
if isinstance(layer, SoftmaxCCE):
return layer.forward(inputs, y, predict)
layer.forward(inputs)
return self.forward(layer.next, layer.output, y, predict)
def backward(self, layer, dvalues, y):
if layer is None:
return
if isinstance(layer, SoftmaxCCE):
layer.backward(dvalues, y)
else:
layer.backward(dvalues)
return self.backward(layer.prev, layer.dinputs, y)
def train(self, X, y, epochs=10, batch=None, print_frequency=1, early_stopping=False, X_val=None, y_val=None):
if batch is not None:
steps = X.shape[0] // batch
if steps * batch < X.shape[0]:
steps += 1
else:
steps = 1
if early_stopping:
epochs = 200
acc = 0
break_count = 0
for epoch in range(epochs + 1):
self.loss_activation.loss.new_pass()
self.accuracy.new_pass()
for step in range(steps):
if batch is None:
batch_X = X
batch_y = y
else:
batch_X = X[step * batch:(step + 1) * batch]
batch_y = y[step * batch:(step + 1) * batch]
# Forward Propagation
self.forward(self.layers[0], batch_X, batch_y)
# Determine accuracy
self.accuracy.calculate(self.loss_activation.output, batch_y)
# Back Propagation
self.backward(self.loss_activation, self.loss_activation.output, batch_y)
# Update parameters
self.optimizer.pre_update_parameters()
for layer in self.layers:
self.optimizer.update_parameters(layer)
self.optimizer.post_update_parameters()
# Get and print epoch loss and accuracy
if epoch % print_frequency == 0:
data_loss = self.loss_activation.loss.calculate_accumulated()
regularization_loss = sum(map(self.loss_activation.loss.regularization_loss, self.layers))
loss = data_loss + regularization_loss
accuracy = self.accuracy.calculate_accumulated()
self.plot.model_accuracy.append(accuracy)
print(f'epoch: {epoch}, acc: {accuracy:.3f}, loss: {loss:.3f}, data_loss: {data_loss:.3f}, '
f'reg_loss: {regularization_loss:.3f}, learning_rate: {self.optimizer.current_learning_rate: .5f}')
if early_stopping:
val_acc = self.evaluate(X_val, y_val)
self.plot.val_accuracy.append(val_acc)
if val_acc - acc < 0.0001:
break_count += 1
if break_count == 6:
self.plot.draw_figure()
break
acc = val_acc
def predict(self, X):
"""
Conducts a single forward pass of the model with data given in X.
:param X_test: Data to predict
:return: The output of the Softmax function (a list of normalized probabilities)
"""
# TODO: This function needs to check the format of the data
output = self.forward(self.layers[0], X, None, predict=True)
return output
def save(self, path):
"""
This function saves the model to the above specified path. First a copy is made of the model, then all internal
counters and attributes of this copied model are reset or deleted (to allow for future training). Finally this
model is saved using the Python pickle module https://docs.python.org/3/library/pickle.html
:param path: The path and name of the file
"""
model = deepcopy(self)
model.loss_activation.loss.new_pass()
model.accuracy.new_pass()
# Clear all existing attributes
for attribute in ('inputs', 'output', 'dinputs', 'dweights', 'dbiases'):
for layer in model.layers:
layer.__dict__.pop(attribute, None)
for activation in model.activation_functions:
activation.__dict__.pop(attribute, None)
model.loss_activation.__dict__.pop(attribute, None)
with open(path, 'wb') as file:
pickle.dump(model, file)
@staticmethod
def load(path):
"""
Loads a model at a specified path
:param path: The path and filename of the pickle serialized model
:return: The loaded model
"""
with open(path, 'rb') as file:
model = pickle.load(file)
return model
def evaluate(self, X_test, y_test):
confidences = self.predict(X_test)
predictions = np.argmax(confidences, axis=1)
accuracy = np.mean(predictions == y_test)
return accuracy