forked from CSAILVision/semantic-segmentation-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathth.py
42 lines (38 loc) · 1.19 KB
/
th.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch
from torch.autograd import Variable
import numpy as np
from collections.abc import Mapping
from collections.abc import Sequence
__all__ = ['as_variable', 'as_numpy', 'mark_volatile']
def as_variable(obj):
if isinstance(obj, Variable):
return obj
if isinstance(obj, Sequence):
return [as_variable(v) for v in obj]
elif isinstance(obj, Mapping):
return {k: as_variable(v) for k, v in obj.items()}
else:
return Variable(obj)
def as_numpy(obj):
if isinstance(obj, Sequence):
return [as_numpy(v) for v in obj]
elif isinstance(obj, Mapping):
return {k: as_numpy(v) for k, v in obj.items()}
elif isinstance(obj, Variable):
return obj.data.cpu().numpy()
elif torch.is_tensor(obj):
return obj.cpu().numpy()
else:
return np.array(obj)
def mark_volatile(obj):
if torch.is_tensor(obj):
obj = Variable(obj)
if isinstance(obj, Variable):
obj.no_grad = True
return obj
elif isinstance(obj, Mapping):
return {k: mark_volatile(o) for k, o in obj.items()}
elif isinstance(obj, Sequence):
return [mark_volatile(o) for o in obj]
else:
return obj