-
Notifications
You must be signed in to change notification settings - Fork 12
/
ioztat
904 lines (754 loc) · 33.3 KB
/
ioztat
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
#!/usr/bin/env python3
# Based on https://www.reddit.com/r/zfs/comments/s0gxp0/ok_i_made_it_tool_to_show_io_for_individual/
# BSD 2-Clause License
#
# Copyright (c) 2022, Openoid LLC, on behalf of the r/zfs community
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
import copy
import math
import os
import re
import shutil
import signal
import sys
import time
PROGRAM_VERSION = '2.0.2-dev'
# We have little interesting to do with these signals - restore default handlers
# so our WIFSIGNALED() state propagates properly to the shell
signal.signal(signal.SIGINT, signal.SIG_DFL)
# Docs warn against this, but we're not writing to anything but stdout/err.
# If we ever need to restore standard Python behaviour, catch BrokenPipeError in
# our print() calls, restore the handler and then re-raise the signal.
signal.signal(signal.SIGPIPE, signal.SIG_DFL)
def fail(message):
"""Print message to stderr and exit with a failure"""
print(message, file=sys.stderr)
sys.exit(1)
# Platform specific section
#
# Must implement:
#
# DatasetDict = dict[dataset_name=str, timestamp=int|str, reads=int|str,
# writes=int|str, nread=int|str, nwritten=int|str,
# nunlinks=int|str, nunlinked=int|str]
# FetchDatasets(pools=Optional[list[str]]): Callable: Iterable[DatasetDict]
#
# i.e. a callable factory (likely a class) that takes an optional list of pools,
# and returns a callable that returns a new batch of dicts conforming to
# DatasetDict.
#
# timestamp is a nanosecond monotonic counter, e.g. time.monotonic_ns()
if sys.platform.startswith("linux"):
import glob
class FetchDatasets:
def __init__(self, pools=None):
if pools:
patterns = map(glob.escape, pools)
else:
patterns = ["*"]
self.globs = [
os.path.join("/proc/spl/kstat/zfs", pattern, "objset-*")
for pattern in patterns
]
def __call__(self):
datasets = (
self.parse_dataset(file)
for pattern in self.globs
for file in glob.glob(pattern)
)
return list(filter(None, datasets))
@staticmethod
def parse_dataset(file):
"""Parse a single ZFS objset file"""
# Shortened example of these files:
#############################################
# 31 1 0x01 7 2160 6165792836 1634992995579
# name type data
# dataset_name 7 rpool/ROOT/default
#############################################
# Field 7 of the header is a nanosecond data snapshot timestamp.
# Conveniently, dataset names may not contain spaces.
try:
with open(file, "r", encoding="latin-1") as f:
header, _fieldnames, *fields = [line.split() for line in f]
fields.append(("timestamp", None, header[6]))
return {
field[0]: field[2]
for field in fields
if len(field) > 2
}
except FileNotFoundError:
# Datasets may be destroyed between our globbing and opening
return None
def preflight():
try:
with open("/sys/module/zfs/version", "r", encoding="latin-1") as f:
version = f.read().rstrip()
match = re.match(r'^(\d+)\.(\d+)', version)
if not match:
raise ValueError(f"could not parse '{version}'")
major, minor = int(match.group(1)), int(match.group(2))
if major == 0 and minor < 8:
fail(f"OpenZFS {major}.{minor} does not support dataset statistics. Please update to 0.8 or higher.")
except (ValueError, OSError) as e:
fail(f"Unable to determine OpenZFS version from /sys/module/zfs/version: {e}")
preflight()
elif sys.platform.startswith("freebsd"):
try:
# Attempt to use py-sysctl if available for best performance
import sysctl
def fetch_sysctl(oids):
return (value for oid in oids for value in sysctl.filter(oid))
except ImportError:
import subprocess
from collections import namedtuple
SysctlValue = namedtuple('SysctlValue', ['name', 'value'])
def fetch_sysctl(oids):
r = subprocess.run(['/sbin/sysctl', '-e', '--', *oids],
capture_output=True, check=False, encoding='latin-1')
stats = (line.split("=", 2) for line in r.stdout.split("\n"))
return (SysctlValue(*nv) for nv in stats if len(nv) == 2)
from collections import defaultdict
class FetchDatasets:
def __init__(self, pools=None):
# We're interested in kstat.zfs.*.dataset.objset-*.*
if pools:
self.oids = tuple(f'kstat.zfs.{pool}.dataset.' for pool in pools)
else:
self.oids = ('kstat.zfs.',)
def __call__(self):
timestamp = time.monotonic_ns()
datasets = defaultdict(lambda: {'timestamp': timestamp})
# Note objset ID's are only unique to individual pools
for ctl in fetch_sysctl(self.oids):
name = ctl.name.rsplit(".", 4)
if len(name) == 5 and name[2] == 'dataset':
_, pool, _, objset, oid = name
datasets[(pool, objset)][oid] = ctl.value
return datasets.values()
def preflight():
match = re.match(r'(\d+)\.(\d+)', os.uname().release)
if not match:
fail(f"Unable to determine FreeBSD version from {os.uname().release}")
major, minor = int(match.group(1)), int(match.group(2))
if major < 12 or (major == 12 and minor < 2):
fail(f"FreeBSD {major}.{minor} does not support dataset statistics. Please update to 12.2 or higher.")
preflight()
else:
fail("Unsupported platform: " + sys.platform)
################################################################################
# Core type
class Dataset:
"""
ZFS dataset statistics over a timespan in seconds
"""
name = ''
reads = 0
nread = 0
writes = 0
nwritten = 0
nunlinks = 0
nunlinked = 0
timespan = 0
def __init__(self, name=''):
self.name = name
@classmethod
def from_dict(cls, data):
d = cls(data['dataset_name'])
d.reads = int(data['reads'])
d.nread = int(data['nread'])
d.writes = int(data['writes'])
d.nwritten = int(data['nwritten'])
d.nunlinks = int(data.get('nunlinks', 0))
d.nunlinked = int(data.get('nunlinked', 0))
d.timespan = int(data['timestamp']) / 1e9
return d
@property
def rareq_sz(self):
return self.nread / self.reads if self.reads else 0
@property
def wareq_sz(self):
return self.nwritten / self.writes if self.writes else 0
@property
def operations(self):
return self.reads + self.writes
@property
def throughput(self):
return self.nread + self.nwritten
def is_nonzero(self):
"""True if this DatasetDiff has any non-zero deltas"""
return self.operations or self.throughput or self.nunlinks or self.nunlinked
def per_second(self):
"""
Return a copy of Dataset with values normalized to per-second rates
"""
if self.timespan:
d = copy.copy(self)
d.reads /= self.timespan
d.nread /= self.timespan
d.writes /= self.timespan
d.nwritten /= self.timespan
d.nunlinks /= self.timespan
d.nunlinked /= self.timespan
d.timespan = 1.0
return d
return self
def __sub__(self, other):
"""
Return a new Dataset with this one's values subtracted from other
"""
d = copy.copy(self)
d.reads -= other.reads
d.nread -= other.nread
d.writes -= other.writes
d.nwritten -= other.nwritten
d.nunlinks -= other.nunlinks
d.nunlinked -= other.nunlinked
d.timespan -= other.timespan
return d
def __add__(self, other):
"""
Return a new Dataset with this one's values added to other
Note timespan is set to the maximum of the two values instead of being
added.
"""
d = copy.copy(self)
d.reads += other.reads
d.nread += other.nread
d.writes += other.writes
d.nwritten += other.nwritten
d.nunlinks += other.nunlinks
d.nunlinked += other.nunlinked
d.timespan = max(d.timespan, other.timespan)
return d
################################################################################
# String formatting
class Column:
"""
Formats (translates raw value to string) and optionally justifies (adjusts
the string to fit within a given width) a single column.
"""
def __init__(self, key, heading, width=0, format=str, just=None):
self.key = key
self.heading = heading
self.width = width
self.format = format
self.just = just
def render(self, values):
return self.justify(str(self.format(values[self.key])))
def render_heading(self):
return self.justify(self.heading)
def justify(self, string):
return self.just(string, self.width) if self.just else string
class ColumnGroup:
"""
A simplified column that justifies a string to span the set of Column
objects it is meant to cover. Does not support formatting.
Width here is the size of separators not covered by the raw width of the
spanned columns themselves.
"""
def __init__(self, heading, columns, width=0, just=str.center):
self.heading = heading
self.columns = columns
self.width = width
self.just = just
def group_width(self):
return self.width + sum((c.width for c in self.columns))
def render_heading(self):
return self.justify(self.heading)
def justify(self, string):
return self.just(string, self.group_width()) if self.just else string
class ColumnFormatter:
"""
A buffered formatter for columnar data with optional group headings.
"""
def __init__(self, column_separator=' ', row_separator='-', buffer=None):
self.columns = []
self.column_index = {}
self.groups = None
self.column_separator = column_separator
self.row_separator = row_separator
self.buffer = buffer if buffer is not None else []
def add_column(self, name, cls=Column, **args):
self.column_index[name] = len(self.columns)
self.columns.append(cls(name, **args))
def add_group(self, name='', colspan=1, just=str.center):
"""Add a group heading that spans the previous colspan columns"""
if self.groups is None:
self.groups = ColumnFormatter(column_separator=self.column_separator,
buffer=self.buffer)
self.groups.add_column(name, cls=ColumnGroup, columns=self.columns[-colspan:],
width=len(self.column_separator) * (colspan - 1), just=just)
def set_column_width(self, key, width):
"""Set the width of the column"""
self.columns[self.column_index[key]].width = width
def get_printed_width(self, exclude=()):
"""
Return the printed width of columns and their separators, excluding the
keys in exclude.
"""
return sum((c.width + len(self.column_separator)
for c in self.columns
if c.key not in exclude))
def print_row(self, **data):
"""Add a row of data to be formatted into the internal buffer"""
formatted = (column.render(data) for column in self.columns)
self.print(self.column_separator.join(formatted))
def print_header(self):
"""Add headings and optionally group headings to the internal buffer"""
if self.groups:
self.groups.print_header()
formatted = (column.render_heading() for column in self.columns)
self.print(self.column_separator.join(formatted))
def print_divider(self):
"""
Add a line of column_separator in the space given to each column to the
internal buffer.
"""
self.print(
self.column_separator.join(
[''.ljust(c.width, self.row_separator) for c in self.columns]))
def print(self, string, end="\n"):
"""
Adds the specified string to the internal buffer.
Must eventually be followed by a call to flush()
"""
self.buffer.append(str(string) + end)
def flush(self, lines=None):
"""Print the internal buffer, up to the optional lines limit."""
buffer = ''.join(self.buffer)
if lines:
buffer = "\n".join(buffer.split("\n", lines)[:lines])
print(buffer, end='')
self.buffer.clear()
class NumberToHuman:
"""Number formatting functions"""
SIZE_PREFIX = ('', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y')
FORMATS = ('{:.2f}{}', '{:.1f}{}', '{:.0f}{}')
@classmethod
def formatter(cls, length, decimal=False):
"""
Return a function that will format a number to a shortened SI decimal or
binary form that fits within a given length.
"""
divisor = 1000 if decimal else 1024
formats = cls.FORMATS
size_prefix = cls.SIZE_PREFIX
size_prefix_max = len(size_prefix) - 1
powers = [pow(divisor, i) for i in range(len(size_prefix))]
def fmt(num):
n = num
index = 0
while n >= divisor and index < size_prefix_max:
n /= divisor
index += 1
u = size_prefix[index]
if index == 0 or num % powers[index] == 0:
return str(int(n)) + u
for fmt in formats:
ret = fmt.format(n, u)
if len(ret) <= length:
return ret
return ret
return fmt
class DatasetName:
"""Dataset name formatting functions"""
PATH_INDENT = ' '
ELLIPSIS = '+'
@classmethod
def shorten(cls, path, limit):
"""Shorten a dataset name to fit within limit"""
if len(path) <= limit:
return path
# Always display the pool name
components = path.split('/', 1)
ret = components[0]
if len(components) > 1:
last = components[1][-(limit - (len(ret) + len(cls.ELLIPSIS) + 1)):]
ret += '/' + cls.ELLIPSIS + last
return ret
@classmethod
def _indent(cls, name, depth, limit):
"""Indent name by depth PATH_INDENTs constrained by limit"""
if (len(cls.PATH_INDENT) * depth) + len(name) > limit:
return (cls.ELLIPSIS + name).rjust(limit - 1)[:limit]
return (cls.PATH_INDENT * depth) + name
@classmethod
def indent(cls, name, last_path, limit):
"""
Take a name and a prior split path (or an empty list), returning a
tuple of the indented set of lines to print as a prefix up to this
component, the indented current component, and the current path leading
to this one to be passed to the next call to indent_format.
"""
cur_path = name.split('/')
common = os.path.commonprefix([last_path, cur_path])
prefix = []
for i, segment in enumerate(cur_path[len(common):-1]):
prefix.append(cls._indent(segment, len(common) + i, limit))
last_segment = cls._indent(cur_path[-1], len(cur_path) - 1, limit)
return ("\n".join(prefix), last_segment, cur_path)
@classmethod
def indent_len(cls, path):
"""
Calculate the maximum width of this path as rendered by print_format
"""
segments = path.split('/')
return (len(segments[0:-1]) * len(cls.PATH_INDENT)) + len(segments[-1])
################################################################################
# Argument processing, column configuration, and main loop
SORTS = {
'name': {'key': lambda x: x.name},
'operations': {'key': lambda x: x.operations, 'reverse': True},
'reads': {'key': lambda x: x.reads, 'reverse': True},
'writes': {'key': lambda x: x.writes, 'reverse': True},
'throughput': {'key': lambda x: x.throughput, 'reverse': True},
'nread': {'key': lambda x: x.nread, 'reverse': True},
'nwritten': {'key': lambda x: x.nwritten, 'reverse': True},
}
SORT_DISPLAY = list(SORTS.keys())
SORT_ALIAS = {
'operations': ['io', 'ops', 'iops'],
'reads': ['read', 'rps'],
'writes': ['write', 'wps'],
'throughput': ['bandwidth'],
'nread': ['nreads', 'rmbps'],
'nwritten': ['nwrite', 'nwrites', 'wmbps'],
}
SORTS.update({alias: SORTS[name] for name, aliases in SORT_ALIAS.items() for alias in aliases})
def parse_args():
"""Parse command-line arguments list"""
parser = argparse.ArgumentParser(description='iostat for ZFS datasets', add_help=False)
parser.add_argument('dataset', type=str, nargs='*', help='ZFS dataset')
parser.add_argument(argparse.SUPPRESS, metavar='interval [count]', nargs='?',
help='seconds between reports and number of reports')
parser.add_argument('-c', dest='count', type=int,
help='number of reports generated')
parser.add_argument('-D', dest='decimal', action='store_true',
help='display size in decimal powers of 1000 instead of 1024')
parser.add_argument('-e', dest='exact', action='store_true',
help='display exact values without truncation or scaling')
parser.add_argument('-H', dest='scripted', action='store_true',
help='scripted mode, omit headers and tab-separate fields')
parser.add_argument('-h', '--help', action='help',
help='display this help message and exit')
parser.add_argument('-I', dest='per_interval', action='store_true',
help='display totals since the last report rather than averaged per-second')
parser.add_argument('-i', dest='interval', type=float,
help='interval between reports in seconds')
parser.add_argument('-N', dest='header_once', action='store_true',
help='display headers at most once')
parser.add_argument('-n', dest='non_recursive', action='store_true',
help='omit child datasets when filtering')
parser.add_argument('-o', dest='overwrite', action='store_true',
help='overwrite old reports in terminal')
group = parser.add_mutually_exclusive_group()
group.add_argument('-P', dest='fullname', action='store_true', default=None,
help='display dataset names on a single line')
group.add_argument('-p', dest='fullname', action='store_false', default=None,
help='display dataset names as an abbreviated tree')
parser.add_argument('-S', dest='sum_children', action='store_true',
help='include statistics for child datasets in parents')
parser.add_argument('-s', dest='sort', type=str.lower, default='name',
choices=SORTS.keys(), metavar='{%s}' % ','.join(SORT_DISPLAY),
help='sort by the specified field')
parser.add_argument('-T', dest='timestamp', choices=['u', 'd'],
help='prefix reports with a Unix timestamp or formatted date')
parser.add_argument('-V', '--version', action='version', version='%(prog)s ' + PROGRAM_VERSION,
help='display version number and exit')
parser.add_argument('-x', dest='extended', action='count', default=0,
help='display extended statistics: once for average I/O size, \
twice for unlink queue')
parser.add_argument('-y', dest='skip', action='store_const', default=0, const=1,
help='omit the initial "summary" report')
parser.add_argument('-z', dest='nonzero', action='store_true',
help='omit datasets with zero activity')
args = parser.parse_args()
# Handle [interval [count]]
def is_positive_float(value):
try:
value = float(value)
# We want to avoid parsing 'inf' and 'nan', as these are valid pool names
# NaN always compares False with another float, so just guard against inf
return value > 0.0 and not math.isinf(value)
except ValueError:
return False
if len(args.dataset) > 0 and is_positive_float(args.dataset[-1]):
args.interval = float(args.dataset.pop())
if len(args.dataset) > 0 and is_positive_float(args.dataset[-1]):
args.count = int(round(args.interval))
args.interval = float(args.dataset.pop())
# Past here interval and count are either None or non-zero
if args.count is not None and not args.count > 0:
parser.error('count must be positive')
if args.interval is not None and not is_positive_float(args.interval):
parser.error('interval must be positive')
# If there's a count but no interval, default to one second
if args.count and not args.interval:
args.interval = 1.0
# If neither are specified, default to one iteration and one second
if not (args.count or args.interval):
args.count = 1
args.interval = 1.0
# Sanitize specified datasets according to ZFS rules.
#
# This helps defend against platform-specific code being passed arbitrary
# strings which might interact unpredictably with constructing paths or
# command lines, and also makes typos a bit more obvious to the user.
#
# Technically the regexp is enough, but try to provide helpful error messages
# for common errors.
dataset_pattern = re.compile(r'\A[a-zA-Z][a-zA-Z0-9_.:-]*(?:/[a-zA-Z0-9_.:-]+)*\Z')
for ds in args.dataset:
if ds.endswith('/'):
parser.error(f"trailing slash in dataset name: '{ds}'")
if '//' in ds:
parser.error(f"empty component in dataset name: '{ds}'")
if not dataset_pattern.match(ds):
parser.error(f"invalid dataset name: '{ds}'")
# Enable full paths if we're not sorting by name or in nonzero mode, unless otherwise specified
if args.fullname is None:
args.fullname = args.sort != 'name' or args.scripted or args.exact or args.nonzero
if args.overwrite and not sys.stdout.isatty():
parser.error('overwrite mode only supported in a terminal')
if args.extended > 1 and sys.platform.startswith("freebsd12"):
print("warning: unlinks statistics require FreeBSD 13+", file=sys.stderr)
return args
def create_column_formatter(args):
"""Create a ColumnFormatter instance configured for the given args"""
if args.scripted:
column_separator = "\t"
name_just = None
num_just = None
field_width = 0
else:
column_separator = ' '
name_just = str.ljust
num_just = str.rjust
field_width = 11 if args.exact else 5
if args.exact:
num_format = round
bytes_format = round
else:
num_format = NumberToHuman.formatter(length=field_width, decimal=True)
bytes_format = NumberToHuman.formatter(length=field_width, decimal=args.decimal)
# Define our two types of data column from a shared base style
base = {'width': field_width, 'just': num_just}
num = {'format': num_format, **base}
byte = {'format': bytes_format, **base}
formatter = ColumnFormatter(column_separator=column_separator, row_separator='-')
formatter.add_column('name', heading='dataset', just=name_just)
formatter.add_group()
formatter.add_column('reads', heading='read', **num)
formatter.add_column('writes', heading='write', **num)
formatter.add_group('operations', 2)
formatter.add_column('nread', heading='read', **byte)
formatter.add_column('nwritten', heading='write', **byte)
formatter.add_group('throughput', 2)
if args.extended > 0:
formatter.add_column('rareq_sz', heading='read', **byte)
formatter.add_column('wareq_sz', heading='write', **byte)
formatter.add_group('opsize', 2)
if args.extended > 1:
formatter.add_column('nunlinks', heading='queue', **num)
formatter.add_column('nunlinked', heading='done', **num)
formatter.add_group('unlinks', 2)
return formatter
class DatasetDiffIter:
"""
Take an argument object and create an iterator over lists of Dataset diffs
with appropriate filtering and sorting applied.
"""
def __init__(self, args):
# Configure a chain of iterators appropriate for our arguments
self.iter = self._diff_iter(args)
if args.nonzero:
self.filter(lambda d: d.is_nonzero())
if args.sum_children:
self.apply(self._sum_children)
if args.dataset:
# Cast to a faster structure for lookups
# In my testing a set is faster even for a single item.
args.dataset = set(args.dataset)
if args.non_recursive:
# Look only for the exact datasets specified
self.filter(lambda d: d.name in args.dataset)
else:
# Also look for any that start with those plus a slash
starts = tuple((ds + '/' for ds in args.dataset))
self.filter(lambda d: d.name in args.dataset or d.name.startswith(starts))
if args.interval:
self.iter = self._interval_iter(self.iter, args.interval)
for _ in range(args.skip):
next(self.iter, None)
if args.count:
self.iter = self._take_iter(self.iter, args.count)
if not args.per_interval:
self.map(lambda d: d.per_second())
if args.sort != 'name':
# Sorting by name first makes it a secondary sort field
self.apply(lambda diffs: sorted(sorted(diffs, **SORTS['name']), **SORTS[args.sort]))
else:
self.apply(lambda diffs: sorted(diffs, **SORTS['name']))
if not args.overwrite:
# Filter out empty iterations if we're in normal mode.
# We must coerce diffs into a list because this filters by the count,
# and it may be a generator at this point
self.iter = filter(None, map(list, self.iter))
# Ensure we return a list from each iteration
self.apply(list)
def __iter__(self):
return self.iter
def filter(self, operation):
"""Filter diffs by operation"""
self.iter = (filter(operation, diffs) for diffs in self.iter)
def map(self, operation):
"""Apply operation to each diff"""
self.iter = (map(operation, diffs) for diffs in self.iter)
def apply(self, operation):
"""Apply operation to each set of diffs"""
self.iter = (operation(diffs) for diffs in self.iter)
@classmethod
def _diff_iter(cls, args):
"""Iterate over Iterable[Dataset] deltas"""
pools = {dataset.split('/')[0] for dataset in args.dataset}
dataset_fetcher = FetchDatasets(pools)
def fetch_datasets():
return {d.name: d for d in
map(Dataset.from_dict, dataset_fetcher())}
summary = fetch_datasets()
cls._validate_dataset_args(args, summary.keys())
yield summary.values()
prevdatasets = summary
for datasets in iter(fetch_datasets, None):
yield (datasets[key] - prevdatasets[key]
for key in datasets.keys() & prevdatasets.keys())
prevdatasets = datasets
@staticmethod
def _validate_dataset_args(args, found):
"""
If any specified datasets are not present in the found list, exit with
an error message.
"""
failed = False
for ds in args.dataset:
if ds in found:
continue
children = any(os.path.commonpath((ds, path)) == ds for path in found)
if args.non_recursive:
if children:
# Accept unmounted datasets as arguments if we're going to
# sum child datasest into them
if args.sum_children:
continue
msg = 'mounted'
else:
msg = 'found'
print(f"dataset not {msg}: '{ds}'", file=sys.stderr)
failed = True
elif not children:
print(f"dataset not found: '{ds}'", file=sys.stderr)
failed = True
if failed:
sys.exit(1)
@staticmethod
def _sum_children(diffs):
"""
Return Iterable[Dataset] for Iterable[Dataset] having added child
datasets to parents, creating them if necessary.
"""
sums = {}
for diff in diffs:
for depth in range(diff.name.count('/') + 1):
path, *_ = diff.name.rsplit('/', depth)
if path in sums:
sums[path] += diff
else:
sums[path] = Dataset(path) + diff
return sums.values()
@staticmethod
def _interval_iter(it, interval):
"""Yield an item from the provided Iterable every interval seconds"""
deadline = time.monotonic() + interval
for item in it:
yield item
sleep = deadline - time.monotonic()
if sleep > 0:
time.sleep(sleep)
else:
# We've fallen behind, possible due to being suspended, or the user
# has asked for an interval below our redraw time.
# Reset the interval, repeat the loop, and hope for better next time.
deadline = time.monotonic() + interval
deadline += interval
@staticmethod
def _take_iter(it, count):
"""Yield at most count items from Iterable"""
for _ in range(count):
yield next(it, None)
def main():
args = parse_args()
formatter = create_column_formatter(args)
stats_width = formatter.get_printed_width(exclude=('name'))
calc_name_width = len if args.fullname else DatasetName.indent_len
max_name_width = 0
isatty = sys.stdout.isatty()
for iteration, diff in enumerate(DatasetDiffIter(args)):
width, height = shutil.get_terminal_size()
width, height = width or 80, height or 24
avail_width = width - stats_width
max_name_width = max(max_name_width,
max((calc_name_width(d.name) for d in diff), default=10))
name_width = max(10, min([avail_width, max_name_width]))
formatter.set_column_width('name', name_width)
if args.overwrite:
# Clear the screen and move the cursor to the upper-left
formatter.print("\033[2J\033[1;1H", end='')
if iteration > 0 and not (args.scripted or args.overwrite):
formatter.print_divider()
if args.timestamp == 'u':
formatter.print(int(time.time()))
elif args.timestamp == 'd':
formatter.print(time.strftime('%c'))
if not args.scripted:
if (iteration == 0 or not args.header_once and
(args.overwrite or isatty and iteration % height == 0)):
formatter.print_header()
formatter.print_divider()
last_path = []
for d in diff:
if args.fullname:
name = d.name if args.exact else DatasetName.shorten(d.name, name_width)
else:
prefix, name, last_path = DatasetName.indent(d.name, last_path, name_width)
if prefix:
formatter.print(prefix)
formatter.print_row(name=name, reads=d.reads, writes=d.writes,
nread=d.nread, nwritten=d.nwritten,
rareq_sz=d.rareq_sz, wareq_sz=d.wareq_sz,
nunlinks=d.nunlinks, nunlinked=d.nunlinked)
formatter.flush(lines=height if args.overwrite else None)
if __name__ == '__main__':
main()