@@ -3,6 +3,7 @@ using SphericalHarmonicModes
3
3
using Test
4
4
using HCubature
5
5
using Aqua
6
+ using LegendrePolynomials
6
7
7
8
import SphericalHarmonics: NorthPole, SouthPole, allocate_y, allocate_p, RealHarmonics, ComplexHarmonics
8
9
888
889
s_exp = " 10-element AssociatedLegendrePolynomials{BigFloat} for lmax = 3 (uninitialized)"
889
890
end
890
891
end
892
+
893
+ @testset " Parity" begin
894
+ lmax = 10
895
+ S1 = SphericalHarmonics. cache (lmax)
896
+ S2 = SphericalHarmonics. cache (lmax)
897
+ for θ in LinRange (0 , pi , 10 )
898
+ P1 = computePlmcostheta! (S1, θ)
899
+ P2 = computePlmcostheta! (S2, pi - θ)
900
+ for l in 0 : lmax, m in 0 : l
901
+ @test isapprox (P2[(l,m)], (- 1 )^ (l + m) * P1[(l,m)], atol = 1e-13 , rtol = 1e-13 )
902
+ end
903
+ for ϕ in LinRange (0 , 2pi , 10 )
904
+ Y1 = computeYlm! (S1, θ, ϕ)
905
+ Y2 = computeYlm! (S2, pi - θ, pi + ϕ)
906
+ for l in 0 : lmax, m in - l: l
907
+ @test isapprox (Y2[(l,m)], (- 1 )^ l * Y1[(l,m)], atol = 1e-13 , rtol = 1e-13 )
908
+ end
909
+ end
910
+ end
911
+ end
912
+
913
+ @testset " m = 0 Legendre" begin
914
+ # for m = 0, the spherical harmonics are normalized Legendre Polynomials and are purely real
915
+ lmax = 100
916
+ @testset " ComplexHarmonics" begin
917
+ S = SphericalHarmonics. cache (lmax)
918
+ LP = zeros (0 : lmax)
919
+ for θ in LinRange (0 , pi , 10 )
920
+ LegendrePolynomials. collectPl! (LP, cos (θ), lmax = lmax)
921
+ computePlmcostheta! (S, θ)
922
+ for ϕ in LinRange (0 , 2pi , 10 )
923
+ computeYlm! (S, θ, ϕ)
924
+ for l in 0 : lmax
925
+ @test isapprox (imag (S. Y[(l,0 )]), 0 , atol = 1e-13 )
926
+ @test isapprox (S. Y[(l,0 )], √ ((2 l+ 1 )/ 4pi ) * LP[l], atol = 1e-13 , rtol = 1e-13 )
927
+ end
928
+ end
929
+ end
930
+ end
931
+ @testset " RealHarmonics" begin
932
+ S = SphericalHarmonics. cache (lmax, SHType = RealHarmonics ())
933
+ LP = zeros (0 : lmax)
934
+ for θ in LinRange (0 , pi , 10 )
935
+ LegendrePolynomials. collectPl! (LP, cos (θ), lmax = lmax)
936
+ computePlmcostheta! (S, θ)
937
+ for ϕ in LinRange (0 , 2pi , 10 )
938
+ computeYlm! (S, θ, ϕ)
939
+ for l in 0 : lmax
940
+ @test isapprox (imag (S. Y[(l,0 )]), 0 , atol = 1e-13 )
941
+ @test isapprox (S. Y[(l,0 )], √ ((2 l+ 1 )/ 4pi ) * LP[l], atol = 1e-13 , rtol = 1e-13 )
942
+ end
943
+ end
944
+ end
945
+ end
946
+ end
0 commit comments