-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiso_gen.py
341 lines (283 loc) · 11.9 KB
/
iso_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# This file is licensed under the BSD 3-Clause License.
#
# Copyright (c) 2018, Jan Wollschläger
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from bisect import bisect
import random
import math
import scipy
from isocalc import periodic_table
print_log_messages = True
_max_list_len = 100000
def log(msg):
if print_log_messages == True:
print(msg)
def frange(min_val, max_val, step):
"""Returns an iterator of floats
in the range [<min_val>,<max_val>] including
<min_val> but excluding <max_val> with
an interval of <step>.
>>> from pisotope import iso_gen
>>> lst = list(iso_gen.frange(10,20,1))
>>> min(lst)
10
>>> max(lst)
19
>>> len(lst)
10
"""
val = min_val
while val < max_val:
yield val
val += step
def gaussian_iter(xs, a, b, fwhm):
"""Returns an iterator for application
of the gaussian function with parameters
<a>, <b> and <fwhm> to the list <xs>.
"""
c = fwhm / 2.35482
a *= 1.0 / (c*math.sqrt(2*math.pi))
for x in xs:
yield a * math.e ** (-(x - b)**2/(2*c**2))
def gaussian(xs, a, b, fwhm):
"""Applies the gaussian with the given
parameters to the passed in list.
"""
return list(gaussian_iter(xs, a, b, fwhm))
class SumFormula(object):
def __init__(self, from_string=None, add_macros=None):
self.atom_count_tuples = []
self.macros = [('ACN', 'C2H3N1'),#
('MeCN', 'C2H3N1'), ('THF', 'C4H8O1'), ('DMSO', 'C2H6S1O1')]
if from_string:
self.from_string(from_string)
def subtract(self, other_sum_formula):
for sub_symb, _ in other_sum_formula.atom_count_tuples:
assert(sub_symb in [sym for sym,_ in self.atom_count_tuples])
for sub_symb, sub_count in other_sum_formula.atom_count_tuples:
for i,tup in enumerate(self.atom_count_tuples):
symb, count = tup
if symb == sub_symb:
assert(count - sub_count >= 0)
self.atom_count_tuples[i] = symb, count - sub_count
return self
def add(self, other_sum_formula):
for add_symb, add_count in other_sum_formula.atom_count_tuples:
found_sym = False
for i,tup in enumerate(self.atom_count_tuples):
symb, count = tup
if symb == add_symb:
found_sym = True
self.atom_count_tuples[i] = symb, count + add_count
if not found_sym:
self.atom_count_tuples.append((add_symb, add_count))
return self
def from_string(self, from_string):
from_string = self._process_macros(from_string)
print('--> reduced macro', from_string)
symb = ''
num = ''
mult_fac = 1
mult_fac_until = len(from_string)
skip_after_paren = 0
for i in range(len(from_string)):
if skip_after_paren > 0:
skip_after_paren -= 1
assert(skip_after_paren >= 0)
continue
if from_string[i] == '(':
if symb != '' and num != '':
self.atom_count_tuples.append( (symb, int(num)*mult_fac) )
symb = ''
num = ''
j = i+1
while from_string[j] != ')':
j += 1
mult_fac_until = j
j += 1
new_mult_fac = ''
while j < len(from_string) and from_string[j].isdigit():
new_mult_fac = new_mult_fac + from_string[j]
j += 1
mult_fac = int(new_mult_fac)
continue
if from_string[i] == ')':
pass
if i > mult_fac_until:
mult_fac = 1
mult_fac_until = len(from_string)
if from_string[i].isdigit():
num += from_string[i]
else:
if num != '':
self.atom_count_tuples.append( (symb, int(num)*mult_fac) )
symb = ''
num = ''
if from_string[i] != ')':
symb += from_string[i]
else:
skip_after_paren = 0
j = i+1
while j < len(from_string) and from_string[j].isdigit():
skip_after_paren += 1
j += 1
try:
self.atom_count_tuples.append( (symb, int(num)) )
except:
pass
print(self.atom_count_tuples)
def _process_macros(self, s):
for m in self.macros:
s = s.replace(m[0], m[1])
return s
class IsotopeDistribution(object):
def __init__(self):
self.pse = periodic_table.PeriodicTable()
def generate(self, sum_formula, prob_threshold=0.001, fwhm=0.1, pad_left=3,
pad_right=3, interpolate_grid=0.005):
print('Simulating isotopic distribution ...')
if isinstance(sum_formula, str):
sum_formula = SumFormula(from_string=sum_formula)
ds = self._generate_dir(sum_formula, prob_threshold=prob_threshold)
print('Simulating gaussians...')
xs = [d[3] for d in ds]
ys = [d[2] for d in ds]
x_min = min(xs) - pad_left
x_max = max(xs) + pad_right
plot_xs = list(frange(x_min, x_max, interpolate_grid))
plot_ys = [0.0 for _ in plot_xs]
for i,peak_x in enumerate(xs):
print('peak_x',peak_x)
b = peak_x
a = ys[i]
gauss_ys = gaussian(plot_xs, a, b, fwhm)
for i,py in enumerate(gauss_ys):
plot_ys[i] += py
return ds, plot_xs, plot_ys
def _generate_dir(self, sum_formula, prob_threshold=0.001):
def binom(i,j):
return scipy.special.binom(j,i)
lst = []
pse = self.pse
for atom_type, num_atoms in sum_formula.atom_count_tuples:
elt = pse.elements[atom_type]
# Iterate over isotopes indexed by nominal masses
for nom_mass, isotope in elt.isotopes.items():
prob = isotope.prob
abs_mass = isotope.mass
# each iso dist is made up of atom types, nominal masses,
# the probability and the mass of all atoms together.
lst.append(([atom_type], [nom_mass], prob, abs_mass))
items_to_append = []
for itm in lst:
for i in range(1, num_atoms+1):
items_to_append.append((itm[0]+[atom_type]*i, itm[1]+[nom_mass]*i, itm[2]*((prob)**i)*binom(num_atoms-i,num_atoms), itm[3]+abs_mass*i))
# prevent addition of very unlikely isotope distributions
items_to_append = list(filter(lambda itm: itm[2] > prob_threshold, items_to_append))
# prevent duplicates
lst = lst + list(filter(lambda itm: itm not in lst, items_to_append))
assert(len(lst) < _max_list_len)
lst = list(filter(lambda itm: self._contains_num_atoms_of_type(itm[0], num_atoms, atom_type), lst))
#print(lst)
return list(self._filter_according_to_sum_formula(lst, sum_formula))
def _filter_according_to_sum_formula(self, lst, sf):
sf = sf.atom_count_tuples
for itm in lst:
if all([self._contains_num_atoms_of_type(itm[0], tup[1], tup[0]) for tup in sf]):
yield itm
def _contains_num_atoms_of_type(self, lst_of_atom_types, num_atoms, atom_type):
predicate = len([True for itm in lst_of_atom_types if str(itm) == str(atom_type)]) == num_atoms
if predicate:
print('!!!')
return predicate
class RandomIsotopeDistribution(object):
def __init__(self):
self.pse = periodic_table.PeriodicTable()
def generate(self, sum_formula, max_iterations=10000, float_accuracy=5, fwhm=0.5, peaks=True, interpolate_grid=0.025, pad_left=2, pad_right=2):
print('Simulating isotopic distribution...')
mass_intensity_dir = self.generate_dir(sum_formula, max_iterations=max_iterations,
float_accuracy=float_accuracy)
print('Simulating gaussians...')
if peaks:
x_min = min(list(mass_intensity_dir.keys())) - pad_left
x_max = max(list(mass_intensity_dir.keys())) + pad_right
xs = list(frange(x_min, x_max, interpolate_grid))
ys = [0.0 for _ in xs]
for peak_x in mass_intensity_dir.keys():
b = peak_x
a = mass_intensity_dir[peak_x]
p_ys = gaussian(xs, a, b, fwhm)
for i,py in enumerate(p_ys):
ys[i] += py
return xs, ys
return mass_intensity_dir
def generate_dir(self, sum_formula, max_iterations=10000, float_accuracy=3):
mass_intensity_dir = {}
for it in range(max_iterations):
mass = round(self.random_walk(sum_formula), float_accuracy)
if mass in mass_intensity_dir:
mass_intensity_dir[mass] += 1
else:
mass_intensity_dir[mass] = 1
return mass_intensity_dir
def old_take_random_isotope(self, elt):
isotopes = list(elt.isotopes.values())
P = [isotope.prob for isotope in isotopes]
cdf = [P[0]]
for i in range(1, len(P)):
cdf.append(cdf[-1] + P[i])
random_ind = bisect(cdf,random())
return isotopes[random_ind]
def _shuffle_two_lists(self,a,b):
import random
c = list(zip(a, b))
random.shuffle(c)
a, b = zip(*c)
return a,b
def take_random_isotope(self, elt):
def weighted_choice(choices):
total = sum(w for c, w in choices)
r = random.uniform(0, total)
upto = 0
for c, w in choices:
if upto + w >= r:
return c
upto += w
assert False, "Shouldn't get here"
isotopes = list(elt.isotopes.values())
P = [isotope.prob for isotope in isotopes]
isotopes,P = self._shuffle_two_lists(isotopes,P)
return weighted_choice(list(zip(isotopes,P)))
def random_walk(self, sum_formula):
mass = 0.0
elements = self.pse.elements
take_random_isotope = self.take_random_isotope
for atom, count in sum_formula.atom_count_tuples:
for i in range(count):
mass += take_random_isotope(elements[atom]).mass
return mass