|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import torch\n", |
| 10 | + "import torch.nn as nn\n", |
| 11 | + "from torch.nn import functional as F" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "code", |
| 16 | + "execution_count": 2, |
| 17 | + "metadata": {}, |
| 18 | + "outputs": [], |
| 19 | + "source": [ |
| 20 | + "with open('verne.txt', 'r') as f:\n", |
| 21 | + " text = f.read()\n", |
| 22 | + "\n", |
| 23 | + "vocab_size = len(set(text))" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "code", |
| 28 | + "execution_count": 3, |
| 29 | + "metadata": {}, |
| 30 | + "outputs": [], |
| 31 | + "source": [ |
| 32 | + "# construct a character level tokenizer\n", |
| 33 | + "ctoi = {c:i for i,c in enumerate(set(text))}\n", |
| 34 | + "itoc = {i:c for i,c in enumerate(set(text))}\n", |
| 35 | + "encode = lambda x: [ctoi[c] for c in x]\n", |
| 36 | + "decode = lambda x: ''.join([itoc[i] for i in x])" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "code", |
| 41 | + "execution_count": 24, |
| 42 | + "metadata": {}, |
| 43 | + "outputs": [], |
| 44 | + "source": [ |
| 45 | + "data = torch.tensor(encode(text), dtype=torch.long)\n", |
| 46 | + "\n", |
| 47 | + "n = int(len(data) *.9)\n", |
| 48 | + "train_data = data[:n]\n", |
| 49 | + "val_data = data[n:]\n", |
| 50 | + "\n", |
| 51 | + "batch_size = 32\n", |
| 52 | + "block_size = 8\n", |
| 53 | + "device = torch.device('mps')\n", |
| 54 | + "\n", |
| 55 | + "def get_batch(split):\n", |
| 56 | + " data = train_data if split == 'train' else val_data\n", |
| 57 | + " ix = torch.randint(0, len(data) - block_size, (batch_size,))\n", |
| 58 | + " x = torch.stack([data[i:i+block_size] for i in ix])\n", |
| 59 | + " y = torch.stack([data[i+1:i+block_size+1] for i in ix])\n", |
| 60 | + " return x.to(device), y.to(device)" |
| 61 | + ] |
| 62 | + }, |
| 63 | + { |
| 64 | + "cell_type": "code", |
| 65 | + "execution_count": null, |
| 66 | + "metadata": {}, |
| 67 | + "outputs": [], |
| 68 | + "source": [] |
| 69 | + }, |
| 70 | + { |
| 71 | + "cell_type": "code", |
| 72 | + "execution_count": 25, |
| 73 | + "metadata": {}, |
| 74 | + "outputs": [], |
| 75 | + "source": [ |
| 76 | + "class BigramLanguageModel(nn.Module):\n", |
| 77 | + " def __init__(self, vocab_size: int):\n", |
| 78 | + " super().__init__()\n", |
| 79 | + " #construct a lookup table where each row corresponds to each token\n", |
| 80 | + " #and contains the logits for the next tokcn\n", |
| 81 | + " self.embedding_table= nn.Embedding(vocab_size, vocab_size)\n", |
| 82 | + "\n", |
| 83 | + " def forward(self, idx:torch.Tensor, target:torch.Tensor | None = None) -> tuple[torch.Tensor, torch.Tensor | None]:\n", |
| 84 | + " #look up the logits for the next token\n", |
| 85 | + " logits = self.embedding_table(idx)\n", |
| 86 | + "\n", |
| 87 | + " if target is None:\n", |
| 88 | + " loss = None\n", |
| 89 | + " else:\n", |
| 90 | + " #compute the loss\n", |
| 91 | + " B, T, C = logits.shape\n", |
| 92 | + " logits = logits.view(B*T, C)\n", |
| 93 | + " loss = F.cross_entropy(logits, target.view(-1))\n", |
| 94 | + " return logits, loss\n", |
| 95 | + "\n", |
| 96 | + " def generate(self, idx: torch.Tensor, max_tokens:int) -> torch.Tensor:\n", |
| 97 | + " #generate tokens\n", |
| 98 | + " with torch.no_grad():\n", |
| 99 | + " for _ in range(max_tokens):\n", |
| 100 | + " logits, loss = self.forward(idx)\n", |
| 101 | + " logits = logits[:, -1, :]\n", |
| 102 | + " probs = F.softmax(logits, dim=-1)\n", |
| 103 | + " next_token = torch.multinomial(probs, 1)\n", |
| 104 | + " idx = torch.cat((idx, next_token), dim=1)\n", |
| 105 | + " return idx" |
| 106 | + ] |
| 107 | + }, |
| 108 | + { |
| 109 | + "cell_type": "code", |
| 110 | + "execution_count": 26, |
| 111 | + "metadata": {}, |
| 112 | + "outputs": [ |
| 113 | + { |
| 114 | + "name": "stdout", |
| 115 | + "output_type": "stream", |
| 116 | + "text": [ |
| 117 | + "torch.Size([32, 8])\n", |
| 118 | + "tensor(5.1389, device='mps:0', grad_fn=<NllLossBackward0>)\n", |
| 119 | + "0£h Œi((“WI_+z:YyNXn=-1”_Tr5i£:oN“3$\n", |
| 120 | + "°m/zfŒ\"EfYM5>:3&OgPŒ,‘J-6i1/_V_″vfS7I@FnCé=—A\n", |
| 121 | + "N2:i57ï/)X1!nEb,>\n" |
| 122 | + ] |
| 123 | + } |
| 124 | + ], |
| 125 | + "source": [ |
| 126 | + "torch.manual_seed(1337)\n", |
| 127 | + "bigram = BigramLanguageModel(vocab_size).to(device) \n", |
| 128 | + "x, y = get_batch('train')\n", |
| 129 | + "\n", |
| 130 | + "print(x.shape)\n", |
| 131 | + "\n", |
| 132 | + "logits, loss = bigram(x,y)\n", |
| 133 | + "print(loss)\n", |
| 134 | + "\n", |
| 135 | + "print(decode(bigram.generate(torch.zeros(1,1, dtype=torch.long, device=device), 100)[0].tolist()))" |
| 136 | + ] |
| 137 | + }, |
| 138 | + { |
| 139 | + "cell_type": "code", |
| 140 | + "execution_count": 27, |
| 141 | + "metadata": {}, |
| 142 | + "outputs": [], |
| 143 | + "source": [ |
| 144 | + "optimizer = torch.optim.AdamW(bigram.parameters(), lr=1e-3)" |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "code", |
| 149 | + "execution_count": 29, |
| 150 | + "metadata": {}, |
| 151 | + "outputs": [ |
| 152 | + { |
| 153 | + "name": "stdout", |
| 154 | + "output_type": "stream", |
| 155 | + "text": [ |
| 156 | + "2.5752177238464355\n" |
| 157 | + ] |
| 158 | + } |
| 159 | + ], |
| 160 | + "source": [ |
| 161 | + "for i in range(10000):\n", |
| 162 | + " x,y = get_batch('train')\n", |
| 163 | + " logits, loss = bigram(x,y)\n", |
| 164 | + " optimizer.zero_grad()\n", |
| 165 | + " loss.backward()\n", |
| 166 | + " optimizer.step()\n", |
| 167 | + "print(loss.item())" |
| 168 | + ] |
| 169 | + }, |
| 170 | + { |
| 171 | + "cell_type": "code", |
| 172 | + "execution_count": 37, |
| 173 | + "metadata": {}, |
| 174 | + "outputs": [ |
| 175 | + { |
| 176 | + "name": "stdout", |
| 177 | + "output_type": "stream", |
| 178 | + "text": [ |
| 179 | + "0\n", |
| 180 | + "The borven iove s theannokintwaim, we---trs to ar-o ad anted I ves, “Hibouerthedeloke ier Theatis l\n" |
| 181 | + ] |
| 182 | + } |
| 183 | + ], |
| 184 | + "source": [ |
| 185 | + "print(decode(bigram.generate(torch.zeros(1,1, dtype=torch.long, device=device), 100)[0].tolist()))" |
| 186 | + ] |
| 187 | + } |
| 188 | + ], |
| 189 | + "metadata": { |
| 190 | + "kernelspec": { |
| 191 | + "display_name": "verne-encoder-transformer", |
| 192 | + "language": "python", |
| 193 | + "name": "python3" |
| 194 | + }, |
| 195 | + "language_info": { |
| 196 | + "codemirror_mode": { |
| 197 | + "name": "ipython", |
| 198 | + "version": 3 |
| 199 | + }, |
| 200 | + "file_extension": ".py", |
| 201 | + "mimetype": "text/x-python", |
| 202 | + "name": "python", |
| 203 | + "nbconvert_exporter": "python", |
| 204 | + "pygments_lexer": "ipython3", |
| 205 | + "version": "3.10.9" |
| 206 | + }, |
| 207 | + "orig_nbformat": 4 |
| 208 | + }, |
| 209 | + "nbformat": 4, |
| 210 | + "nbformat_minor": 2 |
| 211 | +} |
0 commit comments