-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path8_search_hyperparameters.py
153 lines (128 loc) · 4.83 KB
/
8_search_hyperparameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import logging
import multiprocessing
import random
import numpy
import torch
import wandb
from src.DataLoaders.RExEmbeddingLoader import RExEmbeddingLoader
from src.LLM.factory import llm_factory
from src.Model.GraphAttentionEmbedder.GraphAttentionEmbedder import GraphAttentionEmbedder
from src.Model.Trainer.SentenceTrainer import SentenceTrainer
from src.Training.pytorch import train, test, evaluate
SEED = 1
torch.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
numpy.random.seed(SEED)
random.seed(SEED)
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def main(gpu: int):
device = torch.device(f"cuda:{gpu}")
run = wandb.init(project="8_search_hyperparameters")
config = wandb.config
llm = llm_factory(
config.embedding_llm_type,
config.embedding_llm_name,
batch_size=config.batch_size,
device=device,
bits=config.quantization,
)
train_dataset, val_dataset, test_dataset = RExEmbeddingLoader.from_dataset(
train_dataset_name=config.pretrain_dataset_name,
graph_dataset_name=config.graph_dataset_name,
llm=llm,
num_neighbors=config.number_of_neighbors,
)
train_loader, val_loader, test_loader = RExEmbeddingLoader.to_loader(train_dataset, val_dataset, test_dataset,
config.batch_size)
run.config.update({
"train_sentences": len(train_dataset),
"val_sentences": len(val_dataset),
"test_sentences": len(test_dataset),
})
graph_embedder = GraphAttentionEmbedder.from_config(config, llm)
graph_embedder = graph_embedder.to(device)
graph_embedder.train()
# Initialize GraphGPT with the pretrained GCN
model = SentenceTrainer(llm, graph_embedder, replace_subject=config.replace_subject)
model.to(device)
loss_function = torch.nn.CrossEntropyLoss()
model = train(
train_loader=train_loader,
val_loader=val_loader,
device=device,
llm=llm,
model=model,
loss_function=loss_function,
checkpoint_dir=None,
learning_rate=config.learning_rate,
epochs=config.number_of_epochs,
patience=config.patience,
batch_size=config.batch_size,
number_of_neighbors=config.number_of_neighbors,
scheduler_step_size=config.scheduler_step_size,
scheduler_gamma=config.scheduler_gamma,
run=run,
)
test(
test_loader=test_loader,
device=device,
llm=llm,
model=model,
loss_function=loss_function,
batch_size=config.batch_size,
number_of_neighbors=config.number_of_neighbors,
run=run,
)
evaluate(test_loader, model, k=50, run=run)
def create_sweep_config(
graph_dataset_name: str,
pretrain_dataset_name: str,
train_dataset_name: str,
):
return {
"method": "bayes",
"metric": {"goal": "maximize", "name": "k10"},
"name": f"{graph_dataset_name}-{pretrain_dataset_name}",
"parameters": {
# Tune
"learning_rate": {"min": 1e-6, "max": 1e-5},
"model_layer_depth": {"min": 1, "max": 3},
"model_layer_width_multiplier": {"min": 0.1, "max": 5.0},
# Constant
"scheduler_step_size": {"value": 10},
"scheduler_gamma": {"value": 0.1},
"quantization": {"value": 2},
"number_of_epochs": {"value": 15},
"patience": {"value": 3},
"num_pseudo_words": {"value": 10},
"replace_subject": {"value": True},
"number_of_neighbors": {"value": 25},
"model_layer_activation": {"value": "leaky_relu"},
"batch_size": {"value": 32},
"embedding_llm_type": {"value": "gpt-2"},
"embedding_llm_name": {"value": "gpt2"},
"graph_dataset_name": {"value": graph_dataset_name},
"pretrain_dataset_name": {"value": pretrain_dataset_name},
"train_dataset_name": {"value": train_dataset_name},
},
}
def start_agent(sweep_id: str, gpu: int):
wandb.agent(sweep_id, function=lambda: main(gpu), project="8_search_hyperparameters")
if __name__ == "__main__":
gpus = [0, 1, 2, 3, 4, 5, 6]
sweep_configuration = create_sweep_config(
graph_dataset_name="TRExStarLite",
pretrain_dataset_name="TriRExLite",
train_dataset_name="TRExBiteLite",
)
sweep_id = wandb.sweep(sweep=sweep_configuration, project="8_search_hyperparameters")
processes = []
for gpu in gpus:
p = multiprocessing.Process(target=start_agent, args=(sweep_id, gpu))
processes.append(p)
p.start()
# Wait for all processes to complete
for p in processes:
p.join()