diff --git a/chapter2/helmholtz.md b/chapter2/helmholtz.md index 00d6d1ac..82da6fb6 100644 --- a/chapter2/helmholtz.md +++ b/chapter2/helmholtz.md @@ -88,8 +88,8 @@ The last term can be written using the Neumann and Robin BCs, that is: $$ \begin{align} \int_{\partial \Omega} \frac{\partial p}{\partial n} \bar v ~\mathrm{d}s = --\int_{\partial \Omega_v} j \omega \rho_0 \bar v ~\mathrm{d}s -- \int_{\partial \Omega_Z} \frac{j \omega \rho_0 \bar{v}_n}{\bar{Z}} p \bar v ~\mathrm{d}s. +-\int_{\partial \Omega_v} j \omega \rho_0 \bar{v}_n \bar v ~\mathrm{d}s +- \int_{\partial \Omega_Z} \frac{j \omega \rho_0}{\bar{Z}} p \bar v ~\mathrm{d}s. \end{align} $$ @@ -111,7 +111,7 @@ We define the sesquilinear form $a(p,v)$ is $$ \begin{align} a(p,v) = \int_{\Omega} \nabla p \cdot \nabla \bar v ~\mathrm{d}x -+ \frac{j \omega }{\bar{Z}} \int_{\partial \Omega_Z} \rho_0 p \bar v ~\mathrm{d}s, ++ \frac{j \omega }{\bar{Z}} \int_{\partial \Omega_Z} \rho_0 p \bar v ~\mathrm{d}s - k^2 \int_{\Omega} p \bar v ~\mathrm{d}x \end{align} $$