forked from EcoForecast/EF_BookCode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCh13_DataAssim_Analytical.Rmd
186 lines (148 loc) · 4.06 KB
/
Ch13_DataAssim_Analytical.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
title: "Chapter 12 - Data Assimilation"
author: "Mike Dietze"
date: "June 15, 2015"
output: html_document
---
## Kalman Filter
```{r}
##### define parameters
mu = 2 # prior mean
tau = 3 # prior sd
Y = 0 # observation
sigma = 2 # observation sd
```
### Helper functions
```{r}
filled.dnorm <- function(x,mu,tau,vertical=TRUE,offset=0,...){
if(vertical){
polygon(c(0,dnorm(x,mu,tau),0)+offset,c(x[1],x,x[length(x)]),...)
}else{
polygon(c(x[1],x,x[length(x)]),c(0,dnorm(x,mu,tau),0)+offset,...)
}
}
filled.density <- function(x,adjust,vertical=TRUE,offset=0,...){
den = density(x,adjust=adjust)
if(vertical){
polygon(c(0,den$y,0)+offset,c(den$x[1],den$x,den$x[length(den$x)]),...)
}else{
polygon(c(den$x[1],den$x,den$x[length(x)]),c(0,den$y,0)+offset,...)
}
}
col.alpha <- function(col,alpha=1){
rgb = col2rgb(col)
rgb(rgb[1],rgb[2],rgb[3],alpha*255,maxColorValue=255)
}
plot.KFupdate <- function(mu,tau,Y,sigma){
xlim = range(qnorm(c(0.01,0.99),mu,tau),qnorm(c(0.01,0.99),Y,sigma))
prec.new = (1/tau^2+1/sigma^2)
mu.new = (mu/tau^2+Y/sigma^2)/prec.new
sigma.new = sqrt(1/prec.new)
x = seq(xlim[1],xlim[2],length=1000)
ylim=c(0,max(dnorm(x,mu.new,sigma.new)))
alpha=0.4
plot(x,dnorm(x,mu,tau),xlim=xlim,ylim=ylim,ylab="Density",type='n',bty='n',
xaxt="n",yaxt="n",xlab=" ",mgp=c(1,1,0)*1.7)
axis(1, pos=0)
axis(2, pos=x[1])
filled.dnorm(x,mu,tau,FALSE,col=col.alpha(4,alpha),lwd=2)
filled.dnorm(x,Y,sigma,FALSE,col=col.alpha(3,alpha),lwd=2)
filled.dnorm(x,mu.new,sigma.new,FALSE,col=col.alpha(2,alpha),lwd=2)
abline(v=Y,lty=2,lwd=3)
legend("topright",c("Prior","Data","Posterior"),lwd=4,col=4:2)
}
```
```{r}
par(mfrow=c(1,1))
plot.KFupdate(mu,tau,Y,sigma)
```
```{r}
par(mfrow=c(2,1))
par(mar=c(2,3,2,2))
plot.KFupdate(mu,tau/2.5,Y,sigma)
plot.KFupdate(mu,tau,Y,sigma/2.5)
```
## Analysis step: comparison of Normal updates
```{r}
## KF one-step
mu = 5 # prior mean
tau = 0.4 # prior sd
Y = 4 # observation
sigma = 0.4 # observation sd
m = 1.2 # process slope
v = 0.25 # process error
offset=ceiling(1.3*max(dnorm(x,mu,tau)))
mu.a = m*mu
tau.a = m*m*tau + v
prec.new = (1/tau.a^2+1/sigma^2)
mu.f = (mu.a/tau.a^2+Y/sigma^2)/prec.new
tau.f = sqrt(1/prec.new)
offset2 = offset + ceiling(1.2*max(dnorm(x,mu.f,tau.f)))
xlim=c(0,offset2)
ylim=c(min(qnorm(0.01,c(mu,Y,mu.a,mu.f),c(tau,sigma,tau.a,tau.f))),
max(qnorm(0.99,c(mu,Y,mu.a,mu.f),c(tau,sigma,tau.a,tau.f))))
par(mfrow=c(1,1))
par(mar=c(4,3,2,2))
x = seq(ylim[1],ylim[2],length=1000)
plot(0,0,xlim=xlim,ylim=ylim,xlab="Time",ylab="X",type='n',bty='n',
xaxt="n",yaxt="n",mgp=c(1,1,0)*1.7)
axis(1, pos=ylim[1])
axis(2, pos=0)
##prior
filled.dnorm(x,mu,tau,vertical=TRUE,col=col.alpha(2,alpha))
text(0.4,mu-0.2,"1: Initial State",cex=1.5)
##Forecast
text(1,7.5,"Forecast Step",cex=2.5)
filled.dnorm(x,mu.a,tau.a,vertical=TRUE,col=col.alpha(4,alpha),offset=offset)
lines(c(0,offset),c(mu,mu.a),lty=2)
lines(c(0,offset),qnorm(0.025,c(mu,mu.a),c(tau,tau.a)),lty=2)
lines(c(0,offset),qnorm(0.975,c(mu,mu.a),c(tau,tau.a)),lty=2)
text(2.8,6,"2: Forecast",cex=1.5)
##Observation
filled.dnorm(x,Y,sigma,col=col.alpha(3,alpha),vertical=TRUE,offset=offset)
lines(c(offset,offset2),c(Y,Y),lty=3,lwd=2)
text(3.5,Y-0.2,"3: New Observation", cex = 1.5)
##Analysis
text(3,7.5,"Analysis Step",cex=2.5)
filled.dnorm(x,mu.f,tau.f,col=col.alpha(2,alpha),vertical=TRUE,offset=offset)
text(3.6,mu.f,"4: Updated State",cex=1.5)
```
## Logistic EKF
```{r}
par(mfrow=c(1,1),lwd=4)
N0 = 3
r = 0.3
p1 = 1
p2 = 1
q1 = 0
q2 = 1
K = 10
g = function(N){
N+r*N*(1-N/K)
}
dg = function(N){
1+r-2*r*N/K
}
#for(r in c(0.2,1)){
nt = 20
N = N0
EN = N0
for(t in 2:nt){
N[t]=g(N[t-1])
m = dg(N[t-1])
p1[t] = m^2*p1[t-1]+q1
p2[t] = m^2*p2[t-1]+q2
}
UC = N+1.96*sqrt(p2)
LC = N-1.96*sqrt(p2)
plot(N,ylim=c(min(LC),max(UC)),type='l',cex.lab=1.5,cex.axis=1.5)
lines(UC,lty=2)
lines(LC,lty=2)
lines(N+1.96*sqrt(p1),lty=3)
lines(N-1.96*sqrt(p1),lty=3)
legend("bottomright",legend=c("mean",paste("q =",c(q2,q1))),lty=1:3,cex=2)
#}
plot(UC-LC)
plot(sqrt(p1)/sqrt(p2))
abline(h=0.5)
```