forked from kangjianwei/LearningJDK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AbstractQueuedSynchronizer.java
3111 lines (2798 loc) · 134 KB
/
AbstractQueuedSynchronizer.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
package java.util.concurrent.locks;
import java.io.Serializable;
import java.lang.invoke.MethodHandles;
import java.lang.invoke.VarHandle;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Date;
import java.util.concurrent.TimeUnit;
/**
* Provides a framework for implementing blocking locks and related
* synchronizers (semaphores, events, etc) that rely on
* first-in-first-out (FIFO) wait queues. This class is designed to
* be a useful basis for most kinds of synchronizers that rely on a
* single atomic {@code int} value to represent state. Subclasses
* must define the protected methods that change this state, and which
* define what that state means in terms of this object being acquired
* or released. Given these, the other methods in this class carry
* out all queuing and blocking mechanics. Subclasses can maintain
* other state fields, but only the atomically updated {@code int}
* value manipulated using methods {@link #getState}, {@link
* #setState} and {@link #compareAndSetState} is tracked with respect
* to synchronization.
*
* <p>Subclasses should be defined as non-public internal helper
* classes that are used to implement the synchronization properties
* of their enclosing class. Class
* {@code AbstractQueuedSynchronizer} does not implement any
* synchronization interface. Instead it defines methods such as
* {@link #acquireInterruptibly} that can be invoked as
* appropriate by concrete locks and related synchronizers to
* implement their public methods.
*
* <p>This class supports either or both a default <em>exclusive</em>
* mode and a <em>shared</em> mode. When acquired in exclusive mode,
* attempted acquires by other threads cannot succeed. Shared mode
* acquires by multiple threads may (but need not) succeed. This class
* does not "understand" these differences except in the
* mechanical sense that when a shared mode acquire succeeds, the next
* waiting thread (if one exists) must also determine whether it can
* acquire as well. Threads waiting in the different modes share the
* same FIFO queue. Usually, implementation subclasses support only
* one of these modes, but both can come into play for example in a
* {@link ReadWriteLock}. Subclasses that support only exclusive or
* only shared modes need not define the methods supporting the unused mode.
*
* <p>This class defines a nested {@link ConditionObject} class that
* can be used as a {@link Condition} implementation by subclasses
* supporting exclusive mode for which method {@link
* #isHeldExclusively} reports whether synchronization is exclusively
* held with respect to the current thread, method {@link #release}
* invoked with the current {@link #getState} value fully releases
* this object, and {@link #acquire}, given this saved state value,
* eventually restores this object to its previous acquired state. No
* {@code AbstractQueuedSynchronizer} method otherwise creates such a
* condition, so if this constraint cannot be met, do not use it. The
* behavior of {@link ConditionObject} depends of course on the
* semantics of its synchronizer implementation.
*
* <p>This class provides inspection, instrumentation, and monitoring
* methods for the internal queue, as well as similar methods for
* condition objects. These can be exported as desired into classes
* using an {@code AbstractQueuedSynchronizer} for their
* synchronization mechanics.
*
* <p>Serialization of this class stores only the underlying atomic
* integer maintaining state, so deserialized objects have empty
* thread queues. Typical subclasses requiring serializability will
* define a {@code readObject} method that restores this to a known
* initial state upon deserialization.
*
* <h3>Usage</h3>
*
* <p>To use this class as the basis of a synchronizer, redefine the
* following methods, as applicable, by inspecting and/or modifying
* the synchronization state using {@link #getState}, {@link
* #setState} and/or {@link #compareAndSetState}:
*
* <ul>
* <li>{@link #tryAcquire}
* <li>{@link #tryRelease}
* <li>{@link #tryAcquireShared}
* <li>{@link #tryReleaseShared}
* <li>{@link #isHeldExclusively}
* </ul>
*
* Each of these methods by default throws {@link
* UnsupportedOperationException}. Implementations of these methods
* must be internally thread-safe, and should in general be short and
* not block. Defining these methods is the <em>only</em> supported
* means of using this class. All other methods are declared
* {@code final} because they cannot be independently varied.
*
* <p>You may also find the inherited methods from {@link
* AbstractOwnableSynchronizer} useful to keep track of the thread
* owning an exclusive synchronizer. You are encouraged to use them
* -- this enables monitoring and diagnostic tools to assist users in
* determining which threads hold locks.
*
* <p>Even though this class is based on an internal FIFO queue, it
* does not automatically enforce FIFO acquisition policies. The core
* of exclusive synchronization takes the form:
*
* <pre>
* Acquire:
* while (!tryAcquire(arg)) {
* <em>enqueue thread if it is not already queued</em>;
* <em>possibly block current thread</em>;
* }
*
* Release:
* if (tryRelease(arg))
* <em>unblock the first queued thread</em>;
* </pre>
*
* (Shared mode is similar but may involve cascading signals.)
*
* <p id="barging">Because checks in acquire are invoked before
* enqueuing, a newly acquiring thread may <em>barge</em> ahead of
* others that are blocked and queued. However, you can, if desired,
* define {@code tryAcquire} and/or {@code tryAcquireShared} to
* disable barging by internally invoking one or more of the inspection
* methods, thereby providing a <em>fair</em> FIFO acquisition order.
* In particular, most fair synchronizers can define {@code tryAcquire}
* to return {@code false} if {@link #hasQueuedPredecessors} (a method
* specifically designed to be used by fair synchronizers) returns
* {@code true}. Other variations are possible.
*
* <p>Throughput and scalability are generally highest for the
* default barging (also known as <em>greedy</em>,
* <em>renouncement</em>, and <em>convoy-avoidance</em>) strategy.
* While this is not guaranteed to be fair or starvation-free, earlier
* queued threads are allowed to recontend before later queued
* threads, and each recontention has an unbiased chance to succeed
* against incoming threads. Also, while acquires do not
* "spin" in the usual sense, they may perform multiple
* invocations of {@code tryAcquire} interspersed with other
* computations before blocking. This gives most of the benefits of
* spins when exclusive synchronization is only briefly held, without
* most of the liabilities when it isn't. If so desired, you can
* augment this by preceding calls to acquire methods with
* "fast-path" checks, possibly prechecking {@link #hasContended}
* and/or {@link #hasQueuedThreads} to only do so if the synchronizer
* is likely not to be contended.
*
* <p>This class provides an efficient and scalable basis for
* synchronization in part by specializing its range of use to
* synchronizers that can rely on {@code int} state, acquire, and
* release parameters, and an internal FIFO wait queue. When this does
* not suffice, you can build synchronizers from a lower level using
* {@link java.util.concurrent.atomic atomic} classes, your own custom
* {@link java.util.Queue} classes, and {@link LockSupport} blocking
* support.
*
* <h3>Usage Examples</h3>
*
* <p>Here is a non-reentrant mutual exclusion lock class that uses
* the value zero to represent the unlocked state, and one to
* represent the locked state. While a non-reentrant lock
* does not strictly require recording of the current owner
* thread, this class does so anyway to make usage easier to monitor.
* It also supports conditions and exposes some instrumentation methods:
*
* <pre> {@code
* class Mutex implements Lock, java.io.Serializable {
*
* // Our internal helper class
* private static class Sync extends AbstractQueuedSynchronizer {
* // Acquires the lock if state is zero
* public boolean tryAcquire(int acquires) {
* assert acquires == 1; // Otherwise unused
* if (compareAndSetState(0, 1)) {
* setExclusiveOwnerThread(Thread.currentThread());
* return true;
* }
* return false;
* }
*
* // Releases the lock by setting state to zero
* protected boolean tryRelease(int releases) {
* assert releases == 1; // Otherwise unused
* if (!isHeldExclusively())
* throw new IllegalMonitorStateException();
* setExclusiveOwnerThread(null);
* setState(0);
* return true;
* }
*
* // Reports whether in locked state
* public boolean isLocked() {
* return getState() != 0;
* }
*
* public boolean isHeldExclusively() {
* // a data race, but safe due to out-of-thin-air guarantees
* return getExclusiveOwnerThread() == Thread.currentThread();
* }
*
* // Provides a Condition
* public Condition newCondition() {
* return new ConditionObject();
* }
*
* // Deserializes properly
* private void readObject(ObjectInputStream s)
* throws IOException, ClassNotFoundException {
* s.defaultReadObject();
* setState(0); // reset to unlocked state
* }
* }
*
* // The sync object does all the hard work. We just forward to it.
* private final Sync sync = new Sync();
*
* public void lock() { sync.acquire(1); }
* public boolean tryLock() { return sync.tryAcquire(1); }
* public void unlock() { sync.release(1); }
* public Condition newCondition() { return sync.newCondition(); }
* public boolean isLocked() { return sync.isLocked(); }
* public boolean isHeldByCurrentThread() {
* return sync.isHeldExclusively();
* }
* public boolean hasQueuedThreads() {
* return sync.hasQueuedThreads();
* }
* public void lockInterruptibly() throws InterruptedException {
* sync.acquireInterruptibly(1);
* }
* public boolean tryLock(long timeout, TimeUnit unit)
* throws InterruptedException {
* return sync.tryAcquireNanos(1, unit.toNanos(timeout));
* }
* }}</pre>
*
* <p>Here is a latch class that is like a
* {@link java.util.concurrent.CountDownLatch CountDownLatch}
* except that it only requires a single {@code signal} to
* fire. Because a latch is non-exclusive, it uses the {@code shared}
* acquire and release methods.
*
* <pre> {@code
* class BooleanLatch {
*
* private static class Sync extends AbstractQueuedSynchronizer {
* boolean isSignalled() { return getState() != 0; }
*
* protected int tryAcquireShared(int ignore) {
* return isSignalled() ? 1 : -1;
* }
*
* protected boolean tryReleaseShared(int ignore) {
* setState(1);
* return true;
* }
* }
*
* private final Sync sync = new Sync();
* public boolean isSignalled() { return sync.isSignalled(); }
* public void signal() { sync.releaseShared(1); }
* public void await() throws InterruptedException {
* sync.acquireSharedInterruptibly(1);
* }
* }}</pre>
*
* @since 1.5
* @author Doug Lea
*/
// 同步队列,是一个带头结点的双向链表,用于实现锁的语义
public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements Serializable {
private static final long serialVersionUID = 7373984972572414691L;
/**
* The number of nanoseconds for which it is faster to spin rather than to use timed park.
* A rough estimate suffices to improve responsiveness with very short timeouts.
*/
static final long SPIN_FOR_TIMEOUT_THRESHOLD = 1000L;
/**
* Head of the wait queue, lazily initialized. Except for
* initialization, it is modified only via method setHead. Note:
* If head exists, its waitStatus is guaranteed not to be
* CANCELLED.
*/
private transient volatile Node head; // 【|同步队列|】的头结点
/**
* Tail of the wait queue, lazily initialized. Modified only via
* method enq to add new wait node.
*/
private transient volatile Node tail; // 【|同步队列|】的尾结点
/**
* The synchronization state.
*/
// 重入锁计数/许可证数量,在不同的锁中,使用方式有所不同
private volatile int state;
// VarHandle mechanics
private static final VarHandle STATE; // 保存字段 state 的内存地址
private static final VarHandle HEAD; // 保存字段 head 的内存地址
private static final VarHandle TAIL; // 保存字段 tail 的内存地址
static {
try {
// 获取这些字段的内存地址
MethodHandles.Lookup l = MethodHandles.lookup();
STATE = l.findVarHandle(AbstractQueuedSynchronizer.class, "state", int.class);
HEAD = l.findVarHandle(AbstractQueuedSynchronizer.class, "head", Node.class);
TAIL = l.findVarHandle(AbstractQueuedSynchronizer.class, "tail", Node.class);
} catch (ReflectiveOperationException e) {
throw new ExceptionInInitializerError(e);
}
// Reduce the risk of rare disastrous classloading in first call to
// LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
Class<?> ensureLoaded = LockSupport.class;
}
/*▼ 构造方法 ████████████████████████████████████████████████████████████████████████████████┓ */
/**
* Creates a new {@code AbstractQueuedSynchronizer} instance
* with initial synchronization state of zero.
*/
protected AbstractQueuedSynchronizer() {
}
/*▲ 构造方法 ████████████████████████████████████████████████████████████████████████████████┛ */
/*▼ 独占锁 ████████████████████████████████████████████████████████████████████████████████┓ */
/* 申请 ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ */
/**
* Acquires in exclusive mode, ignoring interrupts.
* Implemented by invoking at least once {@link #tryAcquire}, returning on success.
* Otherwise the thread is queued, possibly repeatedly blocking and unblocking,
* invoking {@link #tryAcquire} until success.
* This method can be used to implement method {@link Lock#lock}.
*
* @param arg the acquire argument. This value is conveyed to
* {@link #tryAcquire} but is otherwise uninterpreted and
* can represent anything you like.
*/
// 申请独占锁,允许阻塞带有中断标记的线程(会先将其标记清除)
public final void acquire(int arg) {
// 尝试申请独占锁
if(!tryAcquire(arg)){
/*
* 如果当前线程没有申请到独占锁,则需要去排队
* 注:线程被封装到Node中去排队
*/
// 向【|同步队列|】添加一个[独占模式Node](持有争锁线程)作为排队者
Node node = addWaiter(Node.EXCLUSIVE);
// 当node进入排队后再次尝试申请锁,如果还是失败,则可能进入阻塞
if(acquireQueued(node, arg)){
// 如果线程解除阻塞时拥有中断标记,此处要进行设置
selfInterrupt();
}
}
}
/**
* Attempts to acquire in exclusive mode. This method should query
* if the state of the object permits it to be acquired in the
* exclusive mode, and if so to acquire it.
*
* <p>This method is always invoked by the thread performing
* acquire. If this method reports failure, the acquire method
* may queue the thread, if it is not already queued, until it is
* signalled by a release from some other thread. This can be used
* to implement method {@link Lock#tryLock()}.
*
* <p>The default
* implementation throws {@link UnsupportedOperationException}.
*
* @param arg the acquire argument. This value is always the one
* passed to an acquire method, or is the value saved on entry
* to a condition wait. The value is otherwise uninterpreted
* and can represent anything you like.
*
* @return {@code true} if successful. Upon success, this object has
* been acquired.
*
* @throws IllegalMonitorStateException if acquiring would place this
* synchronizer in an illegal state. This exception must be
* thrown in a consistent fashion for synchronization to work
* correctly.
* @throws UnsupportedOperationException if exclusive mode is not supported
*/
// 申请一次独占锁,具体的行为模式由子类实现
protected boolean tryAcquire(int arg) {
throw new UnsupportedOperationException();
}
/**
* Acquires in exclusive uninterruptible mode for thread already in queue.
* Used by condition wait methods as well as acquire.
*
* @param node the node
* @param arg the acquire argument
*
* @return {@code true} if interrupted while waiting
*/
// 当node进入排队后再次尝试申请锁,如果还是失败,则可能进入阻塞
final boolean acquireQueued(final Node node, int arg) {
// 记录当前线程从阻塞中醒来时的中断标记(阻塞(park)期间也可设置中断标记)
boolean interrupted = false;
try {
/*
* 死循环,成功申请到锁后退出
*
* 每个陷入阻塞的线程醒来后,需要重新申请锁
* 只有当自身排在队首时,才有权利申请锁
* 申请成功后,需要丢弃原来的头结点,并将自身作为头结点,然后返回
*/
for(; ; ) {
// 获取node结点的前驱
final Node p = node.predecessor();
// 如果node结点目前排在了队首,则node线程有权利申请锁
if(p == head) {
// 再次尝试申请锁
if(tryAcquire(arg)){
// 设置node为头结点(即丢掉了原来的头结点)
setHead(node);
// 切断旧的头结点与后一个结点的联系,以便GC
p.next = null;
// 返回线程当前的中断标记(如果线程在阻塞期间被标记为中断,这里会返回true)
return interrupted;
}
}
// 抢锁失败时,尝试为node的前驱设置阻塞标记(每个结点的阻塞标记设置在其前驱上)
if(shouldParkAfterFailedAcquire(p, node)) {
/*
* 使线程陷入阻塞
*
* 如果首次到达这里时线程被标记为中断,则此步只是简单地清除中断标记,并返回true
* 接下来,通过死循环,线程再次来到这里,然后进入阻塞(park)...
*
* 如果首次到达这里时线程没有被标记为中断,则直接进入阻塞(park)
*
* 当线程被唤醒后,返回线程当前的中断标记(阻塞(park)期间也可设置中断标记)
*/
interrupted |= parkAndCheckInterrupt();
}
}
} catch(Throwable t) {
// 如果中途有异常发生,应当撤销当前线程对锁的申请
cancelAcquire(node);
// 如果发生异常时拥有中断标记,此处要进行设置
if(interrupted) {
selfInterrupt();
}
throw t;
}
}
/**
* Acquires in exclusive mode, aborting if interrupted.
* Implemented by first checking interrupt status, then invoking
* at least once {@link #tryAcquire}, returning on
* success. Otherwise the thread is queued, possibly repeatedly
* blocking and unblocking, invoking {@link #tryAcquire}
* until success or the thread is interrupted. This method can be
* used to implement method {@link Lock#lockInterruptibly}.
*
* @param arg the acquire argument. This value is conveyed to
* {@link #tryAcquire} but is otherwise uninterpreted and
* can represent anything you like.
*
* @throws InterruptedException if the current thread is interrupted
*/
// 申请独占锁,不允许阻塞带有中断标记的线程
public final void acquireInterruptibly(int arg) throws InterruptedException {
// 测试当前线程是否已经中断,线程的中断状态会被清除
if(Thread.interrupted()) {
// 如果当前线程有中断标记,则抛出异常
throw new InterruptedException();
}
// 尝试申请独占锁
if(!tryAcquire(arg)) {
doAcquireInterruptibly(arg);
}
}
/**
* Acquires in exclusive interruptible mode.
*
* @param arg the acquire argument
*/
// 抢锁失败后,尝试将其阻塞
private void doAcquireInterruptibly(int arg) throws InterruptedException {
// 向【|同步队列|】添加一个[独占模式Node]作为排队者
final Node node = addWaiter(Node.EXCLUSIVE);
try {
// 死循环,成功申请到锁后退出
for(; ; ) {
// 获取node结点的前驱
final Node p = node.predecessor();
// 如果node结点目前排在了队首,则node线程有权利申请锁
if(p == head) {
// 尝试申请锁
if(tryAcquire(arg)){
// 设置node为头结点(即丢掉了原来的头结点)
setHead(node);
// 切断旧的头结点与后一个结点的联系,以便GC
p.next = null;
return;
}
}
// 抢锁失败时,尝试为node的前驱设置阻塞标记(每个结点的阻塞标记设置在其前驱上)
if(shouldParkAfterFailedAcquire(p, node)) {
// 设置当前线程进入阻塞状态,并清除当前线程的中断状态
if(parkAndCheckInterrupt()){
// 如果线程被唤醒时拥有中断标记(在阻塞期间设置的),这里抛出异常
throw new InterruptedException();
}
}
}
} catch(Throwable t) {
// 如果中途有异常发生,应当撤销当前线程对锁的申请
cancelAcquire(node);
throw t;
}
}
/**
* Attempts to acquire in exclusive mode, aborting if interrupted,
* and failing if the given timeout elapses. Implemented by first
* checking interrupt status, then invoking at least once {@link
* #tryAcquire}, returning on success. Otherwise, the thread is
* queued, possibly repeatedly blocking and unblocking, invoking
* {@link #tryAcquire} until success or the thread is interrupted
* or the timeout elapses. This method can be used to implement
* method {@link Lock#tryLock(long, TimeUnit)}.
*
* @param arg the acquire argument. This value is conveyed to
* {@link #tryAcquire} but is otherwise uninterpreted and
* can represent anything you like.
* @param nanosTimeout the maximum number of nanoseconds to wait
*
* @return {@code true} if acquired; {@code false} if timed out
*
* @throws InterruptedException if the current thread is interrupted
*/
// 申请独占锁,不允许阻塞带有中断标记的线程(一次失败后,带着超时标记继续申请)
public final boolean tryAcquireNanos(int arg, long nanosTimeout) throws InterruptedException {
// 测试当前线程是否已经中断,线程的中断状态会被清除
if(Thread.interrupted()) {
// 如果当前线程有中断标记,则抛出异常
throw new InterruptedException();
}
return tryAcquire(arg) // 申请一次锁
|| doAcquireNanos(arg, nanosTimeout); // 抢锁失败的线程再次尝试抢锁(设置了超时)
}
/**
* Acquires in exclusive timed mode.
*
* @param arg the acquire argument
* @param nanosTimeout max wait time
*
* @return {@code true} if acquired
*/
/*
* 申请独占锁,带有超时标记
*
* 如果nanosTimeout<=1000,则在1000纳秒内,不断轮询,尝试获取锁
* 如果nanosTimeout>1000,则线程抢锁失败后,会进入阻塞(累计阻塞时长不超过nanosTimeout纳秒)
* 阻塞可能中途被唤醒,也可能自然醒来
* 不管哪种方式醒来的,只要醒来就再次尝试获取锁
* 如果是中途醒来的,且获取锁失败,那么会继续阻塞剩余的时长,直至超时
* 如果是自然醒来的,且抢锁失败,那么说明已经超时了
* 只要到了超时,则需要取消任务,并返回fasle,代表抢锁失败
*/
private boolean doAcquireNanos(int arg, long nanosTimeout) throws InterruptedException {
// 已经超时的话就返回
if(nanosTimeout<=0L) {
return false;
}
// 计算结束时间
final long deadline = System.nanoTime() + nanosTimeout;
// 向【|同步队列|】添加一个[独占模式Node]作为排队者
final Node node = addWaiter(Node.EXCLUSIVE);
try {
// 死循环,成功申请到锁后退出
for(; ; ) {
// 获取node结点的前驱
final Node p = node.predecessor();
// 如果node结点目前排在了队首,则node线程有权利申请锁
if(p == head) {
// 尝试申请独占锁
if(tryAcquire(arg)){
// 设置node为头结点(即丢掉了原来的头结点)
setHead(node);
// 切断旧的头结点与后一个结点的联系,以便GC
p.next = null;
return true;
}
}
// 判断是否超时(因为可能是半道被唤醒的)
nanosTimeout = deadline - System.nanoTime();
// 已经超时,取消任务
if(nanosTimeout<=0L) {
// 标记node结点为Node.CANCELLED(取消)状态
cancelAcquire(node);
return false;
}
// 抢锁失败时,尝试为node的前驱设置阻塞标记(每个结点的阻塞标记设置在其前驱上)
if(shouldParkAfterFailedAcquire(p, node)) {
if(nanosTimeout>SPIN_FOR_TIMEOUT_THRESHOLD){
// 使线程阻塞nanosTimeout(单位:纳秒)时长后自动醒来(中途可被唤醒)
LockSupport.parkNanos(this, nanosTimeout);
}
}
// 测试当前线程是否已经中断,线程的中断状态会被清除
if(Thread.interrupted()) {
// 如果当前线程有中断标记,则抛出异常
throw new InterruptedException();
}
}
} catch(Throwable t) {
// 如果中途有异常发生,应当撤销当前线程对锁的申请
cancelAcquire(node);
throw t;
}
}
/* 申请 ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲ */
/* 释放 ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ */
/**
* Releases in exclusive mode. Implemented by unblocking one or
* more threads if {@link #tryRelease} returns true.
* This method can be used to implement method {@link Lock#unlock}.
*
* @param arg the release argument. This value is conveyed to
* {@link #tryRelease} but is otherwise uninterpreted and
* can represent anything you like.
*
* @return the value returned from {@link #tryRelease}
*/
// 释放锁,如果锁已被完全释放,则唤醒后续的阻塞线程。返回值表示本次操作后锁是否自由
public final boolean release(int arg) {
// 释放一次锁,返回值表示同步锁是否处于自由状态(无线程持有)
if(tryRelease(arg)) {
/* 如果锁已经处于自由状态,则可以唤醒下一个阻塞的线程了 */
Node h = head;
if(h != null && h.waitStatus != 0) {
// 唤醒h后面陷入阻塞的“后继”
unparkSuccessor(h);
}
return true;
}
return false;
}
/**
* Attempts to set the state to reflect a release in exclusive
* mode.
*
* <p>This method is always invoked by the thread performing release.
*
* <p>The default implementation throws
* {@link UnsupportedOperationException}.
*
* @param arg the release argument. This value is always the one
* passed to a release method, or the current state value upon
* entry to a condition wait. The value is otherwise
* uninterpreted and can represent anything you like.
*
* @return {@code true} if this object is now in a fully released
* state, so that any waiting threads may attempt to acquire;
* and {@code false} otherwise.
*
* @throws IllegalMonitorStateException if releasing would place this
* synchronizer in an illegal state. This exception must be
* thrown in a consistent fashion for synchronization to work
* correctly.
* @throws UnsupportedOperationException if exclusive mode is not supported
*/
// 释放一次锁,返回值表示同步锁是否处于自由状态(无线程持有)
protected boolean tryRelease(int arg) {
throw new UnsupportedOperationException();
}
/* 释放 ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲ */
/*▲ 独占锁 ████████████████████████████████████████████████████████████████████████████████┛ */
/*▼ 共享锁 ████████████████████████████████████████████████████████████████████████████████┓ */
/* 申请 ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ */
/**
* Acquires in shared mode, ignoring interrupts. Implemented by
* first invoking at least once {@link #tryAcquireShared},
* returning on success. Otherwise the thread is queued, possibly
* repeatedly blocking and unblocking, invoking {@link
* #tryAcquireShared} until success.
*
* @param arg the acquire argument. This value is conveyed to
* {@link #tryAcquireShared} but is otherwise uninterpreted
* and can represent anything you like.
*/
// 申请共享锁,允许阻塞带有中断标记的线程(会先将其标记清除)
public final void acquireShared(int arg) {
// 尝试申请锁,返回值<0说明刚才抢锁失败
if(tryAcquireShared(arg)<0) {
doAcquireShared(arg);
}
}
/**
* Attempts to acquire in shared mode. This method should query if
* the state of the object permits it to be acquired in the shared
* mode, and if so to acquire it.
*
* <p>This method is always invoked by the thread performing
* acquire. If this method reports failure, the acquire method
* may queue the thread, if it is not already queued, until it is
* signalled by a release from some other thread.
*
* <p>The default implementation throws {@link
* UnsupportedOperationException}.
*
* @param arg the acquire argument. This value is always the one
* passed to an acquire method, or is the value saved on entry
* to a condition wait. The value is otherwise uninterpreted
* and can represent anything you like.
*
* @return a negative value on failure; zero if acquisition in shared
* mode succeeded but no subsequent shared-mode acquire can
* succeed; and a positive value if acquisition in shared
* mode succeeded and subsequent shared-mode acquires might
* also succeed, in which case a subsequent waiting thread
* must check availability. (Support for three different
* return values enables this method to be used in contexts
* where acquires only sometimes act exclusively.) Upon
* success, this object has been acquired.
*
* @throws IllegalMonitorStateException if acquiring would place this
* synchronizer in an illegal state. This exception must be
* thrown in a consistent fashion for synchronization to work
* correctly.
* @throws UnsupportedOperationException if shared mode is not supported
*/
// 申请共享锁,具体的行为模式由子类实现
protected int tryAcquireShared(int arg) {
throw new UnsupportedOperationException();
}
/**
* Acquires in shared uninterruptible mode.
*
* @param arg the acquire argument
*/
// 当node进入排队后再次尝试申请锁,如果还是失败,则可能进入阻塞
private void doAcquireShared(int arg) {
// 向【|同步队列|】添加一个[共享模式Node]作为排队者
final Node node = addWaiter(Node.SHARED);
// 记录当前线程从阻塞中醒来时的中断状态(阻塞(park)期间也可设置中断标记)
boolean interrupted = false;
try {
// 死循环,成功申请到锁后退出
for(; ; ) {
// 获取node结点的前驱
final Node p = node.predecessor();
// 如果node结点目前排在了队首,则node线程有权利申请锁
if(p == head) {
// 再次尝试申请锁
int r = tryAcquireShared(arg);
if(r >= 0) {
// 更新头结点为node,并为其设置Node.PROPAGATE标记,或唤醒其后续结点
setHeadAndPropagate(node, r);
// 切断旧的头结点与后一个结点的联系,以便GC
p.next = null;
return;
}
}
// 抢锁失败时,尝试为node的前驱设置阻塞标记(每个结点的阻塞标记设置在其前驱上)
if(shouldParkAfterFailedAcquire(p, node)) {
/*
* 如果首次到达这里时线程被标记为中断,则此步只是简单地清除中断标记,并返回true
* 接下来,通过死循环,线程再次来到这里,然后进入阻塞(park)...
*
* 如果首次到达这里时线程没有被标记为中断,则直接进入阻塞(park)
*
* 当线程被唤醒后,返回线程当前的中断标记(阻塞(park)期间也可设置中断标记)
*/
interrupted |= parkAndCheckInterrupt();
}
}
} catch(Throwable t) {
// 如果中途有异常发生,应当撤销当前线程对锁的申请
cancelAcquire(node);
throw t;
} finally {
// 如果线程解除阻塞时拥有中断标记,此处要进行设置
if(interrupted) {
selfInterrupt();
}
}
}
/**
* Acquires in shared mode, aborting if interrupted. Implemented
* by first checking interrupt status, then invoking at least once
* {@link #tryAcquireShared}, returning on success. Otherwise the
* thread is queued, possibly repeatedly blocking and unblocking,
* invoking {@link #tryAcquireShared} until success or the thread
* is interrupted.
*
* @param arg the acquire argument.
* This value is conveyed to {@link #tryAcquireShared} but is
* otherwise uninterpreted and can represent anything
* you like.
*
* @throws InterruptedException if the current thread is interrupted
*/
// 申请共享锁,不允许阻塞带有中断标记的线程
public final void acquireSharedInterruptibly(int arg) throws InterruptedException {
// 测试当前线程是否已经中断,线程的中断状态会被清除
if(Thread.interrupted()) {
// 如果当前线程有中断标记,则抛出异常
throw new InterruptedException();
}
// 尝试申请共享锁
if(tryAcquireShared(arg)<0) {
doAcquireSharedInterruptibly(arg);
}
}
/**
* Acquires in shared interruptible mode.
*
* @param arg the acquire argument
*/
// 抢锁失败后,尝试将其阻塞
private void doAcquireSharedInterruptibly(int arg) throws InterruptedException {
// 向【|同步队列|】添加一个[共享模式Node]作为排队者
final Node node = addWaiter(Node.SHARED);
try {
// 死循环,成功申请到锁后退出
for(; ; ) {
// 获取node结点的前驱
final Node p = node.predecessor();
// 如果node结点目前排在了队首,则node线程有权利申请锁
if(p == head) {
// 尝试申请锁
int r = tryAcquireShared(arg);
if(r >= 0) {
// 更新头结点为node,并为其设置Node.PROPAGATE标记,或唤醒其后续结点
setHeadAndPropagate(node, r);
// 切断旧的头结点与后一个结点的联系,以便GC
p.next = null;
return;
}
}
// 抢锁失败时,尝试为node的前驱设置阻塞标记(每个结点的阻塞标记设置在其前驱上)
if(shouldParkAfterFailedAcquire(p, node)) {
// 设置当前线程进入阻塞状态,并清除当前线程的中断状态
if(parkAndCheckInterrupt()){
// 如果线程被唤醒时拥有中断标记(在阻塞期间设置的),这里抛出异常
throw new InterruptedException();
}
}
}
} catch(Throwable t) {
// 如果中途有异常发生,应当撤销当前线程对锁的申请
cancelAcquire(node);
throw t;
}
}
/**
* Attempts to acquire in shared mode, aborting if interrupted, and
* failing if the given timeout elapses. Implemented by first
* checking interrupt status, then invoking at least once {@link
* #tryAcquireShared}, returning on success. Otherwise, the
* thread is queued, possibly repeatedly blocking and unblocking,
* invoking {@link #tryAcquireShared} until success or the thread
* is interrupted or the timeout elapses.
*
* @param arg the acquire argument. This value is conveyed to
* {@link #tryAcquireShared} but is otherwise uninterpreted
* and can represent anything you like.
* @param nanosTimeout the maximum number of nanoseconds to wait
*
* @return {@code true} if acquired; {@code false} if timed out
*
* @throws InterruptedException if the current thread is interrupted
*/
// 申请共享锁,不允许阻塞带有中断标记的线程(一次失败后,带着超时标记继续申请)
public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout) throws InterruptedException {
// 测试当前线程是否已经中断,线程的中断状态会被清除
if(Thread.interrupted()) {
// 如果当前线程有中断标记,则抛出异常
throw new InterruptedException();
}
return tryAcquireShared(arg) >= 0 // 申请锁
|| doAcquireSharedNanos(arg, nanosTimeout); // 抢锁失败的线程再次尝试抢锁(设置了超时)
}
/**
* Acquires in shared timed mode.
*
* @param arg the acquire argument
* @param nanosTimeout max wait time
*
* @return {@code true} if acquired
*/
/*
* 申请共享锁,带有超时标记
*
* 如果nanosTimeout<=1000,则在1000纳秒内,不断轮询,尝试获取锁
* 如果nanosTimeout>1000,则线程抢锁失败后,会进入阻塞(累计阻塞时长不超过nanosTimeout纳秒)
* 阻塞可能中途被唤醒,也可能自然醒来