diff --git a/CODEOWNERS b/CODEOWNERS index afa98df95..37e8fac91 100644 --- a/CODEOWNERS +++ b/CODEOWNERS @@ -33,7 +33,7 @@ keras_contrib/layers/normalization/groupnormalization.py @titu1994 keras_contrib/layers/capsule.py @SriRangaTarun # losses - +keras-contrib/keras_contrib/losses/euclidean_distance_loss.py @RoadToML # metrics diff --git a/contrib_docs/pydocmd.yml b/contrib_docs/pydocmd.yml index eca7ba534..ffc02d716 100644 --- a/contrib_docs/pydocmd.yml +++ b/contrib_docs/pydocmd.yml @@ -23,6 +23,7 @@ generate: - keras_contrib.losses.jaccard_distance - keras_contrib.losses.crf_loss - keras_contrib.losses.crf_nll + - keras_contrib.losses.euclidean_distance_loss - optimizers.md: - keras_contrib.optimizers: - keras_contrib.optimizers.FTML diff --git a/keras_contrib/losses/euclidean_distance_loss.py b/keras_contrib/losses/euclidean_distance_loss.py new file mode 100644 index 000000000..2d9acfe9f --- /dev/null +++ b/keras_contrib/losses/euclidean_distance_loss.py @@ -0,0 +1,15 @@ +import keras.backend as K + + +def euclidean_distance_loss(y_true, y_pred): + """ + The Euclidean distance between two points in Euclidean space. + + # Arguments + y_true: tensor with true targets. + y_pred: tensor with predicted targets. + + # Returns + float type Euclidean distance between two data points. + """ + return K.sqrt(K.sum(K.square(y_pred - y_true), axis=-1))