-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmultilayer_perceptron.py
93 lines (73 loc) · 2.73 KB
/
multilayer_perceptron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
'''
A Multilayer Perceptron implementation example using TensorFlow library.
'''
from __future__ import print_function
#import Mnist data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot = True)
import tensorflow as tf
#Parameters
learning_rate = 0.001
training_epochs = 15
batch_size = 100
display_step = 1
#Network parameters
n_hidden_1 = 256 # 1st layer number of features
n_hidden_2 = 256 # 2nd layer number of features
n_input = 784 # Mnist data input
n_classes = 10 # the number of classes mnist
#tf graph input
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes])
#Create model
def multilayer_perceptron(x, weights, biases):
#Hidden layer with relu activation
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer_1 = tf.nn.relu(layer_1)
#hidden layer with RELU activation
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
layer_2 = tf.nn.relu(layer_2)
# output layer with linear activation
out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
return out_layer
# store layers weights and bias
weights = {
'h1' : tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'h2' : tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'out' : tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
}
biases = {
'b1' : tf.Variable(tf.random_normal([n_hidden_1])),
'b2' : tf.Variable(tf.random_normal([n_hidden_2])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
# construct model
pred = multilayer_perceptron(x, weights, biases)
# define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = pred, labels = y))
optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost)
#initializing the variables
init = tf.global_variables_initializer()
#launch the graph
with tf.Session() as sess:
sess.run(init)
#training cycle
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_x, batch_y = mnist.train.next_batch(batch_size)
# run optimization op (backprop) and cost op (loss value)
_, c = sess.run([optimizer,cost], feed_dict = {x : batch_x, y : batch_y})
#compute average loss
avg_cost += c/total_batch
#display logs per epoch step
if (epoch +1) % display_step ==0:
print("epoch:", '%04d'% (epoch +1), "cost =", "{:.9f}".format(avg_cost))
print("optimization finished")
#test model
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y,1))
#calculate accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print("Accuracy", accuracy.eval({x:mnist.test.images, y: mnist.test.labels}))