Skip to content

About the accuracy on cityScapes to foggyCityScapes #17

@lch1999

Description

@lch1999

I train and test the model on cityScapes to foggyCityScapes,but my mAP is 35.1, which is lower than 41.7 reported in the paper. I guess maybe there are some mistakes in my configs.

Here are my configs:
Called with args:
Namespace(aug=True, batch_size=1, binary=False, budget=0.3, checkepoch=1, checkpoint=0, checkpoint_interval=10000, checksession=1, class_agnostic=False, conf=True, conf_gamma=0.1, cuda=True, dataset='cityscape', dataset_t='foggy_cityscape', dc=None, detach=True, disp_interval=100, ef=False, eta=0.1, gamma=5, gc=False, image_dir='images', lam=0.01, lam2=0.1, large_scale=False, lc=False, load_name='models', load_name_conf=None, lr=0.001, lr_decay_gamma=0.1, lr_decay_step=5, mGPUs=False, max_epochs=8, net='vgg16', num_workers=0, optimizer='sgd', pl=True, pretrained_epoch=0, resume=False, save_dir='models', session=1, source_like=True, source_model=None, start_epoch=1, student_load_name='models', target_like=True, teacher_alpha=0.99, teacher_load_name='models', test_results_dir='test_results', threshold=0.8, use_tfboard=False, vis=False)
Using config:
{'ANCHOR_RATIOS': [0.5, 1, 2],
'ANCHOR_SCALES': [8, 16, 32],
'CROP_RESIZE_WITH_MAX_POOL': False,
'CUDA': False,
'DATA_DIR': '/home/lch1999/myModel/data',
'DEDUP_BOXES': 0.0625,
'EPS': 1e-14,
'EXP_DIR': 'vgg16',
'FEAT_STRIDE': [16],
'GPU_ID': 0,
'MATLAB': 'matlab',
'MAX_NUM_GT_BOXES': 30,
'MOBILENET': {'DEPTH_MULTIPLIER': 1.0,
'FIXED_LAYERS': 5,
'REGU_DEPTH': False,
'WEIGHT_DECAY': 4e-05},
'PIXEL_MEANS': array([[[102.9801, 115.9465, 122.7717]]]),
'POOLING_MODE': 'align',
'POOLING_SIZE': 7,
'RESNET': {'FIXED_BLOCKS': 1, 'MAX_POOL': False},
'RESNET101_PATH': 'data/pretrained_model/resnet101_caffe.pth',
'RESNET50_PATH': 'data/pretrained_model/resnet50_caffe.pth',
'RNG_SEED': 3,
'ROOT_DIR': '/home/lch1999/myModel',
'TEST': {'BBOX_REG': True,
'HAS_RPN': True,
'MAX_SIZE': 1200,
'MODE': 'nms',
'NMS': 0.3,
'PROPOSAL_METHOD': 'gt',
'RPN_MIN_SIZE': 16,
'RPN_NMS_THRESH': 0.7,
'RPN_POST_NMS_TOP_N': 300,
'RPN_PRE_NMS_TOP_N': 6000,
'RPN_TOP_N': 5000,
'SCALES': [600],
'SVM': False},
'TRAIN': {'ASPECT_GROUPING': False,
'BATCH_SIZE': 256,
'BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'BBOX_NORMALIZE_MEANS': [0.0, 0.0, 0.0, 0.0],
'BBOX_NORMALIZE_STDS': [0.1, 0.1, 0.2, 0.2],
'BBOX_NORMALIZE_TARGETS': True,
'BBOX_NORMALIZE_TARGETS_PRECOMPUTED': True,
'BBOX_REG': True,
'BBOX_THRESH': 0.5,
'BG_THRESH_HI': 0.5,
'BG_THRESH_LO': 0.0,
'BIAS_DECAY': False,
'BN_TRAIN': False,
'DISPLAY': 10,
'DOUBLE_BIAS': True,
'FG_FRACTION': 0.25,
'FG_THRESH': 0.5,
'GAMMA': 0.1,
'HAS_RPN': True,
'IMS_PER_BATCH': 1,
'LEARNING_RATE': 0.001,
'MAX_SIZE': 1200,
'MOMENTUM': 0.9,
'PROPOSAL_METHOD': 'gt',
'RPN_BATCHSIZE': 256,
'RPN_BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
'RPN_CLOBBER_POSITIVES': False,
'RPN_FG_FRACTION': 0.5,
'RPN_MIN_SIZE': 8,
'RPN_NEGATIVE_OVERLAP': 0.3,
'RPN_NMS_THRESH': 0.7,
'RPN_POSITIVE_OVERLAP': 0.7,
'RPN_POSITIVE_WEIGHT': -1.0,
'RPN_POST_NMS_TOP_N': 2000,
'RPN_POST_NMS_TOP_N_TARGET': 256,
'RPN_PRE_NMS_TOP_N': 12000,
'SCALES': [600],
'SNAPSHOT_ITERS': 5000,
'SNAPSHOT_KEPT': 3,
'SNAPSHOT_PREFIX': 'res101_faster_rcnn',
'STEPSIZE': [30000],
'SUMMARY_INTERVAL': 180,
'TRIM_HEIGHT': 600,
'TRIM_WIDTH': 600,
'TRUNCATED': False,
'USE_ALL_GT': True,
'USE_FLIPPED': True,
'USE_GT': False,
'WEIGHT_DECAY': 0.0005},
'USE_GPU_NMS': True,
'VGG_PATH': '/home/lch1999/pretrainvggforUMT/vgg16_caffe.pth'}

And here are my results:
AP for bus = 0.3952
AP for bicycle = 0.3204
AP for car = 0.5049
AP for motorcycle = 0.2490
AP for person = 0.3292
AP for rider = 0.4064
AP for train = 0.3154
AP for truck = 0.2855
Mean AP = 0.3508

Could you please check my config and give some suggestions?Thank you very much!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions