-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreinforce.py
173 lines (154 loc) · 4.92 KB
/
reinforce.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import numpy as np
import gym
import matplotlib.pyplot as plt
import copy
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class actor_net(nn.Module):
def __init__(self,ns,na):
super(actor_net, self).__init__()
self.fc1 = nn.Linear(ns, 30)
self.dropout1 = nn.Dropout2d()
self.fc2 = nn.Linear(30, 30)
self.dropout2 = nn.Dropout2d()
self.fc3 = nn.Linear(30,na) # mu, log(sigma**2)
def forward(self, x):
x = F.relu(self.fc1(x))
# x = self.dropout1(x)
x = F.relu(self.fc2(x))
# x = self.dropout2(x)
x = self.fc3(x)
return x
class critic_net(nn.Module):
def __init__(self,ns,na):
super(critic_net, self).__init__()
self.fc1 = nn.Linear(ns, 30)
self.dropout1 = nn.Dropout2d()
self.fc2 = nn.Linear(30, 30)
self.dropout2 = nn.Dropout2d()
self.fc3 = nn.Linear(30,1)# state value
def forward(self, x):
x = F.relu(self.fc1(x))
# x = self.dropout1(x)
x = F.relu(self.fc2(x))
# x = self.dropout2(x)
x = self.fc3(x)
return x
class REINFORCE:
def __init__(self,dstates, dactions, s0, reward, nepisode,actor_net,critic_net):
# self.states = states
# self.actions = actions
self.ns = dstates
self.na = dactions
self.max_episode_step = nepisode
self.r = reward
self.s0 = s0
self.alpha = 0.5
self.gamma = 0.99#0.99
self.history = []
self.memory = []
# actor
self.actor_net = actor_net
self.actor_optimizer = optim.Adam(self.actor_net.parameters(),lr=0.001)
self.actor_criterion = nn.MSELoss()
# critic
self.critic_net = critic_net
self.critic_optimizer = optim.Adam(self.critic_net.parameters(),lr=0.001)
self.critic_criterion = nn.MSELoss()
def learn(self):
iter = []
l = []
for i in range(300):
s = copy.deepcopy(self.s0)
# print(self.s0,s)
# 1episode計算
steps = 0
self.actor_net.eval()
while True:
steps += 1
# 行動決定
ts = torch.from_numpy(s.astype(np.float32)).clone()
a = self.actor_net.forward(ts)
a = a.to('cpu').detach().numpy().copy()
mu = a[:self.na]
logvar = a[self.na:]
var = np.exp(logvar)
action = np.random.normal(loc=mu, scale=np.sqrt(var))
# print(s,a)
r, s_, fin = self.r(s, action) # 行動の結果、rewardと状態が帰ってくる
# print(s,a,s_,r)
# addmemory
self.memory.append((s,a,action,s_,r))
# update
s = copy.deepcopy(s_)
if fin==1:
# print("\n episode end episode:",i," step:",step,"\n")
break
if steps > self.max_episode_step:
break
# 学習
advanteges = []
state_values = []
states = []
actions = []
for t, step in enumerate(self.memory):
s,a,action,s_,r = step
# 割引報酬計算
Gt = 0
for j, mem in enumerate(self.memory[t:]):
rs, ra, raction, rs_, rr = copy.deepcopy(mem)
Gt += self.gamma ** j * rr
Gt = torch.from_numpy(np.array([Gt]).astype(np.float32)).clone()
# 状態価値計算
self.critic_net.eval()
ts = torch.from_numpy(s.astype(np.float32)).clone()
state_value = self.critic_net.forward(ts)
# advantege計算
advantege = Gt - state_value
# 保存
advanteges.append(advantege)
state_values.append(state_value)
states.append(s)
actions.append(a)
# network更新
self.actor_net.train()
self.critic_net.train()
# 方策勾配計算
mu = ra[:self.na]
logvar = ra[self.na:]
action = raction
var = np.exp(logvar)
logpi = -0.5 * logvar - 0.5 * (action - mu)**2 / var# 次元注意
logpi = torch.from_numpy(logpi.astype(np.float32)).clone()
actor_loss = -logpi * advantege
self.actor_optimizer.zero_grad()
actor_loss.backward(retain_graph=True)
self.actor_optimizer.step()
# critic
critic_loss = F.smooth_l1_loss(Gt,state_value)
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
print("episode", i, "reward", r, "al", actor_loss, "cl", critic_loss)
if (i + 1) % 50 == 0:
torch.save(self.actor_net.state_dict(), "out_RF/dnn" + str(i + 1) +".pt")
print("loss=",actor_loss)
iter.append(i)
l.append(Gt)
plt.plot(iter, l, '-k')
plt.show()
def reward(self, s,a):
return self.r(s,a)
def action(self,s):
# s = np.array([s])
ts = torch.from_numpy(s.astype(np.float32)).clone()
ts = ts.unsqueeze(dim=0)
ts = torch.tensor(ts, dtype=torch.float)
self.Q = self.targetnet.forward(ts)
self.Q = self.Q.to('cpu').detach().numpy().copy()
# print(self.Q)
a = np.argmax(self.Q[0,:])
return a