-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolov5.py
302 lines (240 loc) · 11.5 KB
/
yolov5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import os
import cv2
import sys
import argparse
# add path
# realpath = os.path.abspath(__file__)
# _sep = os.path.sep
# realpath = realpath.split(_sep)
# sys.path.append(os.path.join(realpath[0]+_sep, *realpath[1:realpath.index('rknn_model_zoo')+1]))
# from py_utils.coco_utils import COCO_test_helper
import numpy as np
OBJ_THRESH = 0.25
NMS_THRESH = 0.45
# The follew two param is for map test
# OBJ_THRESH = 0.001
# NMS_THRESH = 0.65
IMG_SIZE = (640, 640) # (width, height), such as (1280, 736)
CLASSES = ("person", "bicycle", "car","motorbike ","aeroplane ","bus ","train","truck ","boat","traffic light",
"fire hydrant","stop sign ","parking meter","bench","bird","cat","dog ","horse ","sheep","cow","elephant",
"bear","zebra ","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite",
"baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife ",
"spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza ","donut","cake","chair","sofa",
"pottedplant","bed","diningtable","toilet ","tvmonitor","laptop ","mouse ","remote ","keyboard ","cell phone","microwave ",
"oven ","toaster","sink","refrigerator ","book","clock","vase","scissors ","teddy bear ","hair drier", "toothbrush ")
coco_id_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
def filter_boxes(boxes, box_confidences, box_class_probs):
"""Filter boxes with object threshold.
"""
box_confidences = box_confidences.reshape(-1)
class_max_score = np.max(box_class_probs, axis=-1)
classes = np.argmax(box_class_probs, axis=-1)
_class_pos = np.where(class_max_score* box_confidences >= OBJ_THRESH)
scores = (class_max_score* box_confidences)[_class_pos]
boxes = boxes[_class_pos]
classes = classes[_class_pos]
return boxes, classes, scores
def nms_boxes(boxes, scores):
"""Suppress non-maximal boxes.
# Returns
keep: ndarray, index of effective boxes.
"""
x = boxes[:, 0]
y = boxes[:, 1]
w = boxes[:, 2] - boxes[:, 0]
h = boxes[:, 3] - boxes[:, 1]
areas = w * h
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x[i], x[order[1:]])
yy1 = np.maximum(y[i], y[order[1:]])
xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
inter = w1 * h1
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= NMS_THRESH)[0]
order = order[inds + 1]
keep = np.array(keep)
return keep
def box_process(position, anchors):
grid_h, grid_w = position.shape[2:4]
col, row = np.meshgrid(np.arange(0, grid_w), np.arange(0, grid_h))
col = col.reshape(1, 1, grid_h, grid_w)
row = row.reshape(1, 1, grid_h, grid_w)
grid = np.concatenate((col, row), axis=1)
stride = np.array([IMG_SIZE[1]//grid_h, IMG_SIZE[0]//grid_w]).reshape(1,2,1,1)
col = col.repeat(len(anchors), axis=0)
row = row.repeat(len(anchors), axis=0)
anchors = np.array(anchors)
anchors = anchors.reshape(*anchors.shape, 1, 1)
box_xy = position[:,:2,:,:]*2 - 0.5
box_wh = pow(position[:,2:4,:,:]*2, 2) * anchors
box_xy += grid
box_xy *= stride
box = np.concatenate((box_xy, box_wh), axis=1)
# Convert [c_x, c_y, w, h] to [x1, y1, x2, y2]
xyxy = np.copy(box)
xyxy[:, 0, :, :] = box[:, 0, :, :] - box[:, 2, :, :]/ 2 # top left x
xyxy[:, 1, :, :] = box[:, 1, :, :] - box[:, 3, :, :]/ 2 # top left y
xyxy[:, 2, :, :] = box[:, 0, :, :] + box[:, 2, :, :]/ 2 # bottom right x
xyxy[:, 3, :, :] = box[:, 1, :, :] + box[:, 3, :, :]/ 2 # bottom right y
return xyxy
def post_process(input_data, anchors):
boxes, scores, classes_conf = [], [], []
# 1*255*h*w -> 3*85*h*w
input_data = [_in.reshape([len(anchors[0]),-1]+list(_in.shape[-2:])) for _in in input_data]
for i in range(len(input_data)):
boxes.append(box_process(input_data[i][:,:4,:,:], anchors[i]))
scores.append(input_data[i][:,4:5,:,:])
classes_conf.append(input_data[i][:,5:,:,:])
def sp_flatten(_in):
ch = _in.shape[1]
_in = _in.transpose(0,2,3,1)
return _in.reshape(-1, ch)
boxes = [sp_flatten(_v) for _v in boxes]
classes_conf = [sp_flatten(_v) for _v in classes_conf]
scores = [sp_flatten(_v) for _v in scores]
boxes = np.concatenate(boxes)
classes_conf = np.concatenate(classes_conf)
scores = np.concatenate(scores)
# filter according to threshold
boxes, classes, scores = filter_boxes(boxes, scores, classes_conf)
# nms
nboxes, nclasses, nscores = [], [], []
for c in set(classes):
inds = np.where(classes == c)
b = boxes[inds]
c = classes[inds]
s = scores[inds]
keep = nms_boxes(b, s)
if len(keep) != 0:
nboxes.append(b[keep])
nclasses.append(c[keep])
nscores.append(s[keep])
if not nclasses and not nscores:
return None, None, None
boxes = np.concatenate(nboxes)
classes = np.concatenate(nclasses)
scores = np.concatenate(nscores)
return boxes, classes, scores
def draw(image, boxes, scores, classes):
for box, score, cl in zip(boxes, scores, classes):
top, left, right, bottom = [int(_b) for _b in box]
print("%s @ (%d %d %d %d) %.3f" % (CLASSES[cl], top, left, right, bottom, score))
cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
(top, left - 6), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
def setup_model(args):
model_path = args.model_path
if model_path.endswith('.pt') or model_path.endswith('.torchscript'):
platform = 'pytorch'
from py_utils.pytorch_executor import Torch_model_container
model = Torch_model_container(args.model_path)
elif model_path.endswith('.rknn'):
platform = 'rknn'
from py_utils.rknn_executor import RKNN_model_container
model = RKNN_model_container(args.model_path, args.target, args.device_id)
elif model_path.endswith('onnx'):
platform = 'onnx'
from py_utils.onnx_executor import ONNX_model_container
model = ONNX_model_container(args.model_path)
else:
assert False, "{} is not rknn/pytorch/onnx model".format(model_path)
print('Model-{} is {} model, starting val'.format(model_path, platform))
return model, platform
def img_check(path):
img_type = ['.jpg', '.jpeg', '.png', '.bmp']
for _type in img_type:
if path.endswith(_type) or path.endswith(_type.upper()):
return True
return False
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Process some integers.')
# basic params
parser.add_argument('--model_path', type=str, required= True, help='model path, could be .pt or .rknn file')
parser.add_argument('--target', type=str, default='rk3566', help='target RKNPU platform')
parser.add_argument('--device_id', type=str, default=None, help='device id')
parser.add_argument('--img_show', action='store_true', default=False, help='draw the result and show')
parser.add_argument('--img_save', action='store_true', default=False, help='save the result')
# data params
parser.add_argument('--anno_json', type=str, default='../../../datasets/COCO/annotations/instances_val2017.json', help='coco annotation path')
# coco val folder: '../../../datasets/COCO//val2017'
parser.add_argument('--img_folder', type=str, default='../model', help='img folder path')
parser.add_argument('--coco_map_test', action='store_true', help='enable coco map test')
parser.add_argument('--anchors', type=str, default='../model/anchors_yolov5.txt', help='target to anchor file, only yolov5, yolov7 need this param')
args = parser.parse_args()
# load anchor
with open(args.anchors, 'r') as f:
values = [float(_v) for _v in f.readlines()]
anchors = np.array(values).reshape(3,-1,2).tolist()
print("use anchors from '{}', which is {}".format(args.anchors, anchors))
# init model
model, platform = setup_model(args)
file_list = sorted(os.listdir(args.img_folder))
img_list = []
for path in file_list:
if img_check(path):
img_list.append(path)
co_helper = COCO_test_helper(enable_letter_box=True)
# run test
for i in range(len(img_list)):
print('infer {}/{}'.format(i+1, len(img_list)), end='\r')
img_name = img_list[i]
img_path = os.path.join(args.img_folder, img_name)
if not os.path.exists(img_path):
print("{} is not found", img_name)
continue
img_src = cv2.imread(img_path)
if img_src is None:
continue
# Due to rga init with (0,0,0), we using pad_color (0,0,0) instead of (114, 114, 114)
pad_color = (0,0,0)
img = co_helper.letter_box(im= img_src.copy(), new_shape=(IMG_SIZE[1], IMG_SIZE[0]), pad_color=(0,0,0))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# preprocee if not rknn model
if platform in ['pytorch', 'onnx']:
input_data = img.transpose((2,0,1))
input_data = input_data.reshape(1,*input_data.shape).astype(np.float32)
input_data = input_data/255.
else:
input_data = img
outputs = model.run([input_data])
boxes, classes, scores = post_process(outputs, anchors)
if args.img_show or args.img_save:
print('\n\nIMG: {}'.format(img_name))
img_p = img_src.copy()
if boxes is not None:
draw(img_p, co_helper.get_real_box(boxes), scores, classes)
if args.img_save:
if not os.path.exists('./result'):
os.mkdir('./result')
result_path = os.path.join('./result', img_name)
cv2.imwrite(result_path, img_p)
print('Detection result save to {}'.format(result_path))
if args.img_show:
cv2.imshow("full post process result", img_p)
cv2.waitKeyEx(0)
# record maps
if args.coco_map_test is True:
if boxes is not None:
for i in range(boxes.shape[0]):
co_helper.add_single_record(image_id = int(img_name.split('.')[0]),
category_id = coco_id_list[int(classes[i])],
bbox = boxes[i],
score = round(scores[i], 5).astype(np.float)
)
# calculate maps
if args.coco_map_test is True:
pred_json = args.model_path.split('.')[-2]+ '_{}'.format(platform) +'.json'
pred_json = pred_json.split('/')[-1]
pred_json = os.path.join('./', pred_json)
co_helper.export_to_json(pred_json)
from py_utils.coco_utils import coco_eval_with_json
coco_eval_with_json(args.anno_json, pred_json)