-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdataloader.py
executable file
·296 lines (199 loc) · 10.3 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import torch
import torch.utils.data as data
import os
import nibabel as nii
import numpy as np
import random
from scipy.ndimage import zoom
import math
from scipy import ndimage
from scipy.ndimage import gaussian_filter
from datetime import datetime
from scipy.ndimage.filters import median_filter
from scipy.ndimage import affine_transform
import tqdm
import loader_helper
from scipy.ndimage.interpolation import map_coordinates
from scipy.ndimage.filters import gaussian_filter
import model
#https://gist.github.com/chsasank/4d8f68caf01f041a6453e67fb30f8f5a
def elastic_transform(image, alpha, sigma, order=3, random_state=None):
"""Elastic deformation of images as described in [Simard2003]_.
.. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for
Convolutional Neural Networks applied to Visual Document Analysis", in
Proc. of the International Conference on Document Analysis and
Recognition, 2003.
"""
assert len(image.shape) == 3
if random_state is None:
random_state = np.random.RandomState(None)
shape = image.shape
dx = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma, mode="constant", cval=0) * alpha
dy = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma, mode="constant", cval=0) * alpha
dz = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma, mode="constant", cval=0) * (alpha/2.5)
x, y, z = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), np.arange(shape[2]), indexing='ij')
indices = np.reshape(x + dx, (-1, 1)), np.reshape(y + dy, (-1, 1)), np.reshape(z + dz, (-1, 1))
#print(dx[:100,0])
return map_coordinates(image, indices, order=order, mode='reflect').reshape(shape)
def normalize(image, mask):
"""
perform data normalization
:param image: input nd array
:param mask: corresponding foreground mask
:return: normalized array
"""
ret = image.copy()
image_masked = np.ma.masked_array(ret, ~(mask))
ret[mask] = ret[mask] - np.mean(image_masked)
ret[mask] = ret[mask] / np.var(image_masked) ** 0.5
ret[~mask] = -100.
return ret
class SimpleReader(data.Dataset):
def __init__(self, paths, patch_size, series = None, annotation_path = None, images_in_epoch=4000, patches_from_single_image=1):
super(SimpleReader, self).__init__()
self.paths = paths
self.patch_size = patch_size
self.images_in_epoch = images_in_epoch
self.patches_from_single_image = patches_from_single_image
self.annotation_path = annotation_path
self.series = []
for p, s in zip(paths,series):
if s is None:
self.series += [(p, f) for f in os.listdir(p) if os.path.isdir(os.path.join(p, f))]
else:
self.series += [(p,f) for f in s]
self.series.sort()
self.labels_location = []
self.__cache()
self.real_length = len(self.series)
self.patches_from_current_image = self.patches_from_single_image
self.current_image_index = 0
self.__load(self.current_image_index)
print(len(self.series))
def __cache(self):
# cache locations of the labels (bounding boxes) inside the images
print('Cache files')
for p, f in tqdm.tqdm(self.series):
image, label, affine = loader_helper.read_multimodal(p, f, self.annotation_path, True)
bbox = loader_helper.bbox3(label>0)
borders = np.array(label.shape)
borders_low = np.array(self.patch_size) / 2.0 + 1
borders_high = borders - np.array(self.patch_size) / 2.0 - 1
bbox[0] = np.maximum(bbox[0]-50, borders_low)
bbox[1] = np.minimum(bbox[1]+50, borders_high)
self.labels_location.append(bbox)
def __load(self, index):
if self.patches_from_current_image > self.patches_from_single_image:
self.patches_from_current_image = 0
self.current_image_index = index
p, f = self.series[index]
self.image, self.label, affine = loader_helper.read_multimodal(p, f, self.annotation_path, True)
mask = self.image > 0
num_voxels = np.sum(mask,axis=(1,2,3))
#print(self.image[mask].shape)
mean = np.sum(self.image / num_voxels[:,None,None,None], axis=(1,2,3))
mean2 = np.sum(np.square(self.image) / num_voxels[:,None,None,None], axis=(1,2,3))
std = np.sqrt(mean2 - mean * mean)
#std1 = self.image.std(axis=(1,2,3))
self.image = (self.image - mean.reshape((self.image.shape[0],1,1,1))) / std.reshape((self.image.shape[0],1,1,1))#self.image.std(axis=(1,2,3), keepdims=True)#(self.image - self.image.mean(axis=(1,2,3), keepdims=True)) / self.image.std(axis=(1,2,3), keepdims=True)
#self.image[~mask] = -10
self.patches_from_current_image += 1
def __getitem__(self, index):
index = index % self.real_length
self.__load(index)
center = np.random.rand(3)
bbox = self.labels_location[self.current_image_index]
center = center * (bbox[1] - bbox[0]) + bbox[0]
left_bottom = center - np.array(self.patch_size) / 2.0
left_bottom = left_bottom.astype(np.int32)
data_out = self.image[:,left_bottom[0]:left_bottom[0] + self.patch_size[0],
left_bottom[1]:left_bottom[1] + self.patch_size[1],
left_bottom[2]:left_bottom[2] + self.patch_size[2]]
label_out = self.label[left_bottom[0]:left_bottom[0] + self.patch_size[0],
left_bottom[1]:left_bottom[1] + self.patch_size[1],
left_bottom[2]:left_bottom[2] + self.patch_size[2]]
seed = datetime.now().microsecond
sigma = random.random()*20 + 10
alpha = random.random()*4000 + 200
x_scale = 0.7 + random.random()*0.6
y_scale = 0.7 + random.random()*0.6
z_scale = 0.7 + random.random()*0.6
label_out = np.eye(4)[label_out.astype(np.int32)].transpose((3,0,1,2))
data_out = affine_transform(data_out,(1, x_scale, y_scale, z_scale),order=1, mode='reflect')
#data_out = np.stack([elastic_transform(data_out[i], alpha, sigma, 1, np.random.RandomState(seed)) for i in range(data_out.shape[0])],axis=0)
label_out = affine_transform(label_out, (1, x_scale, y_scale, z_scale), order=1, mode='reflect')
#label_out = np.stack([elastic_transform(label_out[i], alpha, sigma, 0, np.random.RandomState(seed)) for i in range(data_out.shape[0])],axis=0)
#label_out = (label_out > 0)[None]
if random.random() > 0.5:
data_out = data_out[:,::-1,:,:].copy()
label_out = label_out[:,::-1,:,:].copy()
if random.random() > 0.5:
data_out = data_out[:,:,::-1,:].copy()
label_out = label_out[:,:,::-1,:].copy()
if random.random() > 0.5:
data_out = data_out[:,:,:,::-1].copy()
label_out = label_out[:,:,:,::-1].copy()
if random.random() > 0.5:
data_out = data_out.transpose((0,2,1,3)).copy()
label_out = label_out.transpose((0,2,1,3)).copy()
data_out = data_out * np.random.uniform(0.9,1.1,size=(data_out.shape[0],1,1,1))
data_out = data_out + np.random.uniform(-0.2,0.2,size=(data_out.shape[0],1,1,1))
wt = np.sum(label_out[1:], axis=0, keepdims=True)
tc = np.sum(label_out[[1,3]], axis=0, keepdims=True)
et = label_out[3,None]
label_out = np.concatenate([wt,tc,et],axis=0)
labels_torch = torch.from_numpy(label_out.copy()).float()
return [torch.from_numpy(data_out).float(),
], \
[
labels_torch,]
def __len__(self):
return int(self.images_in_epoch)
class FullReader(data.Dataset):
def __init__(self, path, series = None):
super(FullReader, self).__init__()
self.path = path
if series is None:
self.series = [f for f in os.listdir(path) if os.path.isdir(os.path.join(path, f))]
else:
self.series = series
self.series.sort()
@staticmethod
def get_data_filename(path, series):
return os.path.join(path, series,series+'.nii.gz')
#return os.path.join('/home/localadmin/segthor/data/train_resampled2_2_25_normalized', series + '.npy')
@staticmethod
def get_label_filename(path, series):
return os.path.join(path, series,'GT.nii.gz')
def __getitem__(self, index):
image, label, affine = loader_helper.read_multimodal(data_path=self.path, series=self.series[index], read_annotation=True)
#image = image - image.mean()
#image = image / image.var() ** 0.5
#image = image / 1000.
old_shape = image.shape
new_shape = tuple([loader_helper.closest_to_k(i,16) for i in old_shape[1:]])
new_image = np.full(shape=(old_shape[0],)+new_shape, fill_value=0., dtype=np.float32)
new_label = np.zeros(shape=new_shape, dtype=np.float32)
new_image[:,:old_shape[1],:old_shape[2],:old_shape[3]] = image
new_label[:old_shape[1],:old_shape[2],:old_shape[3]] = label
mask = new_image > 0
num_voxels = np.sum(mask, axis=(1, 2, 3))
mean = np.sum(new_image / num_voxels[:,None,None,None], axis=(1, 2, 3))
mean2 = np.sum(np.square(new_image)/ num_voxels[:,None,None,None], axis=(1, 2, 3))
std = np.sqrt(mean2 - mean * mean)
new_image = (new_image - mean.reshape((new_image.shape[0],1,1,1)))/ std.reshape((new_image.shape[0], 1, 1, 1))
#new_image[~mask] = -10
#new_image = new_image / new_image.std(axis=(1, 2, 3),keepdims=True) #(new_image - new_image.mean(axis=(1, 2, 3), keepdims=True)) / new_image.std(axis=(1, 2, 3),keepdims=True)
new_label_out = (np.eye(4)[new_label.astype(np.int32)]).transpose((3,0,1,2))
#new_label_out = (new_label > 0)[None]
wt = np.sum(new_label_out [1:], axis=0, keepdims=True)
tc = np.sum(new_label_out [[1,3]], axis=0, keepdims=True)
et = new_label_out[3,None]
new_label_out = np.concatenate([wt,tc,et],axis=0)
labels_torch = torch.from_numpy(new_label_out.copy()).float()
return [torch.from_numpy(new_image).float(),
], \
[ labels_torch,
]
def __len__(self):
return len(self.series)