-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathexport_onnx.py
executable file
·38 lines (26 loc) · 1.47 KB
/
export_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import argparse
import torch.onnx
import train
import os
parser = argparse.ArgumentParser(description="PyTorch BraTS2019")
#parser.add_argument("--test_path", default="", type=str, help="path to train data")
parser.add_argument("--name", default="test", type=str, help="experiment name")
parser.add_argument("--models_path", default="/models", type=str, help="path to models folder")
parser.add_argument("--input_size", default=(128, 128, 128), help="Input image size", nargs="+", type=int)
def main():
opt = parser.parse_args()
print(torch.__version__)
print(opt)
trainer = train.Trainer(name=opt.name, models_root=opt.models_path, rewrite=False, connect_tb=False)
trainer.load_best()
trainer.model = trainer.model.module.cpu()
trainer.model = trainer.model.train(False)
trainer.state.cuda = False
x = torch.randn(1, 1, opt.input_size[0], opt.input_size[1], opt.input_size[2], requires_grad=True)
torch_out = torch.onnx.export(trainer.model, # model being run
[x,], # model input (or a tuple for multiple inputs)
os.path.join(opt.models_path, opt.name, opt.name+"_export.onnx"), # where to save the model (can be a file or file-like object)
export_params=True,
verbose=True) # store the trained parameter weights inside the model file
if __name__ == "__main__":
main()