-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
executable file
·339 lines (248 loc) · 11.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import os
import shutil
import pickle
import torch
from torch.optim import *
from torch.autograd import Variable
from tensorboardX import SummaryWriter
import numpy as np
import time
import loader_helper
import metrics
import gc
class TrainingState(object):
def __init__(self):
self.epoch = 0
self.train_metric = dict()
self.val_metric = dict()
# number of processed batches
self.global_step = 0
self.best_val = 0
self.optimizer_state = None
self.cuda = True
class Trainer(object):
def __init__(self, name, models_root, model=None, rewrite=False, connect_tb = True):
self.model = model
assert (isinstance(self.model, (list, tuple, torch.nn.Module)) or self.model is None)
self.name = name
self.models_root = models_root
self.model_path = os.path.join(models_root, self.name)
self.logs_path = os.path.join(self.model_path, 'logs')
self.state = TrainingState()
self.resume_training = False
if os.path.exists(self.model_path):
if rewrite:
shutil.rmtree(self.model_path)
else:
self.resume_training = True
if not os.path.exists(self.model_path):
os.mkdir(self.model_path)
os.mkdir(self.logs_path)
if connect_tb:
self.tb_writer = SummaryWriter(logdir=self.logs_path)
def cuda(self):
if self.model is not None:
self.model.cuda()
self.state.cuda = True
def train(self, criterion, optimizer, optimizer_params, scheduler, scheduler_params, training_data_loader,
evaluation_data_loader, split_into_tiles, pretrained_weights, train_metrics, val_metrics,
track_metric, epoches, default_val, comparator, eval_cpu, continue_form_pretraining):
self.eval_cpu = eval_cpu
assert (isinstance(criterion, (tuple, list, torch.nn.modules.loss._Loss)))
# TODO: custom initializer here
# load weights if any
if self.resume_training:
# load training and continue
self.load_latest()
#self._load('_epoch_65')
elif pretrained_weights is not None:
# load dictionary only
self.model.load_state_dict(pretrained_weights)
elif continue_form_pretraining:
print('Continue from pretraining')
else:
self.state.best_val = default_val
if isinstance(optimizer, type):
optimizer = optimizer(params=self.model.parameters(), **optimizer_params)
if scheduler is not None:
if isinstance(scheduler, type):
scheduler = scheduler(optimizer=optimizer, **scheduler_params)
assert (isinstance(optimizer, torch.optim.Optimizer))
assert (isinstance(scheduler, torch.optim.lr_scheduler._LRScheduler) or scheduler is None)
if self.state.optimizer_state is not None and not continue_form_pretraining:
optimizer.load_state_dict(self.state.optimizer_state)
print('Loaded optimizer state')
# prepare dicts for metrics
if not self.state.train_metric:
for m in train_metrics:
self.state.train_metric[m.name] = []
for m in val_metrics:
self.state.val_metric[m.name] = []
gc.collect()
# training loop
start_epoch = self.state.epoch
for i in range(start_epoch, epoches):
tic = time.time()
#if scheduler is not None:
# scheduler.step()
self.state.global_step = self._train_one_epoch(criterion, optimizer, training_data_loader, train_metrics,
self.state.train_metric, i, self.state.global_step, scheduler)
self._evaluate_and_save(evaluation_data_loader, split_into_tiles, val_metrics, track_metric, self.state.val_metric, i,
comparator)
tac = time.time()
print('Epoch %d, time %s \n' % (i, tac - tic))
self._save(suffix='_epoch_' + str(self.state.epoch))
self._save(suffix='last_model')
self.state.epoch = self.state.epoch + 1
np.random.seed(np.random.get_state()[1][0] + 16)
def predict(self, batch):
self.model.eval()
if self.state.cuda:
self.model.cuda()
with torch.no_grad():
assert (isinstance(batch[0], list))
data = batch[0]
if self.state.cuda:
data = [d.cuda() for d in data]
output = self.model(data)
return output
def predict_tiled(self, batch, output_shape):
# TODO: this is a workaround to support tiling for only signle input
# add tiling for selected inputs ( not just the 0th one)
input = batch[0][0]
output = torch.zeros(output_shape)
if self.state.cuda:
self.model.cuda()
tile_shape = (192, 192, 192)
center_shape = (48, 48, 48)
border = (72, 72, 72)
grid = [int(np.ceil(j / i)) for i, j in zip(center_shape, input.shape[2:])]
for i in range(grid[0]):
for j in range(grid[1]):
for k in range(grid[2]):
index_min, index_max = loader_helper.get_indices(position=(i, j, k), center_shape=center_shape,
border=border)
tile = loader_helper.copy(data=input, tile_shape=tile_shape, index_min=index_min,
index_max=index_max)
if self.state.cuda:
tile = tile.cuda()
out = self.model([tile])[0].detach().cpu()
loader_helper.copy_back(data=output, tile=out, center_shape=center_shape, index_min=index_min,
index_max=index_max, border=border)
output = [output]
return output
def _train_one_epoch(self, criterion, optimizer, training_data_loader, train_metrics, train_metrics_results, epoch,
global_step, scheduler):
aggregate_batches = 1
for m in train_metrics:
m.reset()
if self.state.cuda:
self.model.cuda()
self.model.train()
optimizer.zero_grad()
for idx, batch in enumerate(training_data_loader):
assert (isinstance(batch[0], list) and isinstance(batch[1], list))
data = [Variable(b) for b in batch[0]]
target = [Variable(b, requires_grad=False) for b in batch[1]]
if self.state.cuda:
data = [d.cuda() for d in data]
target = [t.cuda() for t in target]
output = self.model(data)
if isinstance(criterion, (tuple, list)):
loss_val = [c(output, target) for c in criterion]
loss = sum(loss_val) / (len(loss_val))
else:
loss_val = criterion(output, target)
loss = loss_val
loss.backward()
if (idx+1)%aggregate_batches == 0:
#for name, param in self.model.named_parameters():
# self.tb_writer.add_scalar('misc/grad-max-{}'.format(name), torch.max(torch.abs(param.grad)).cpu().numpy(), global_step)
#for param in self.model.parameters():
# param.grad.data = torch.clamp(param.grad.data, min=-1.0,max=1.0)
optimizer.step()
optimizer.zero_grad()
if scheduler is not None:
scheduler.step()
for m in train_metrics:
m.update(output, target)
for idx, l in enumerate(loss_val):
self.tb_writer.add_scalar('loss/loss-{}'.format(idx), l.item(), global_step)
for idx, param_group in enumerate(optimizer.param_groups):
self.tb_writer.add_scalar('misc/lr-{}'.format(idx), param_group['lr'], global_step)
global_step = global_step + 1
for m in train_metrics:
train_metrics_results[m.name].append(m.get())
metrics.print_metrics(self.tb_writer, m, 'train/', epoch)
self.state.optimizer_state = optimizer.state_dict()
return global_step
def _evaluate_and_save(self, evaluation_data_loader, split_into_tiles, val_metrics, track_metric, val_metrics_results, epoch,
comparator):
for m in val_metrics:
m.reset()
self.model.eval()
for batch in evaluation_data_loader:
gc.collect()
#torch.cuda.empty_cache()
assert (isinstance(batch[0], list) and isinstance(batch[1], list))
data = batch[0]
target = batch[1]
if split_into_tiles and not self.eval_cpu:
#TODO: this is a workaround to support tiling for only signle input
# add tiling for selected inputs ( not just the 0th one)
output = torch.zeros_like(batch[1][0])
input = batch[0][0]
tile_shape = (192, 192, 192)
center_shape = (48, 48, 48)
border = (72, 72, 72)
grid = [int(np.ceil(j / i)) for i, j in zip(center_shape, input.shape[2:])]
for i in range(grid[0]):
for j in range(grid[1]):
for k in range(grid[2]):
index_min, index_max = loader_helper.get_indices(position=(i, j, k), center_shape=center_shape, border=border)
tile = loader_helper.copy(data=input, tile_shape=tile_shape, index_min=index_min, index_max=index_max)
if self.state.cuda:
tile = tile.cuda()
with torch.no_grad():
out = self.model([tile])[0].detach().cpu()
loader_helper.copy_back(data=output,tile=out,center_shape=center_shape,index_min=index_min,index_max=index_max,border=border)
output = [output]
elif self.eval_cpu:
tmp_model = self.model.module.cpu()
tmp_model.eval()
with torch.no_grad():
output = tmp_model(data)
else:
with torch.no_grad():
if self.state.cuda:
data = [d.cuda() for d in data]
target = [t.cuda() for t in target]
output = self.model(data)
for m in val_metrics:
m.update(target, output)
val = 0.0
for m in val_metrics:
if m.name == track_metric:
val = m.get()
metrics.print_metrics(self.tb_writer, m, 'val/', epoch)
val_metrics_results[m.name].append(m.get())
if comparator(val, self.state.best_val):
self.state.best_val = val
self._save(suffix='best_model')
print('model saved')
def _save(self, suffix):
s = {'state': self.state,
'model': self.model}
torch.save(s, os.path.join(self.model_path, self.name + suffix + '.pth'))
def _load(self, suffix):
print('loading model %s'%suffix)
s = torch.load(os.path.join(self.model_path, self.name + suffix + '.pth'), map_location=torch.device('cpu'))
self.state = s['state']
if self.model is None:
self.model = s['model']
else:
self.model.load_state_dict(s['model'].state_dict())
def load_latest(self):
self._load('last_model')
def load_best(self):
self._load('best_model')