-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
104 lines (90 loc) · 2.74 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import tensorflow as tf
import math
import tensorflow_hub as hub
import numpy as np
#import matplotlib.pyplot as plt
from tensorflow import keras
from tensorflow.keras import layers
#from sklearn.metrics import roc_curve
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.optimizers import RMSprop
train_examples = 20225
test_examples = 2555
validation_examples = 2551
img_height = img_width =224
batch_size1 = 32
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(16, (3, 3), activation='relu', input_shape=(224, 224, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
# The second convolution
tf.keras.layers.Conv2D(32, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
# The third convolution
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
# The fourth convolution
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
# The fifth convolution
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Flatten(),
#tf.keras.layers.Flatten(input_shape=(224,224,3)),
tf.keras.layers.Dense(1000, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid')
])
model.compile(
loss='binary_crossentropy',
optimizer=RMSprop(lr=0.001),
metrics=["accuracy"]
)
train_datagen = ImageDataGenerator(
rescale = 1.0/255,
rotation_range = 15,
zoom_range = (0.95, 0.95),
horizontal_flip = True,
vertical_flip = True,
data_format = "channels_last",
dtype = tf.float32,
)
validation_datagen = ImageDataGenerator(rescale=1.0/255, dtype=tf.float32)
test_datagen = ImageDataGenerator(rescale=1.0/255, dtype=tf.float32)
train_gen = train_datagen.flow_from_directory(
"data/train/",
target_size=(img_height, img_width),
batch_size=batch_size1,
color_mode="rgb",
class_mode="binary",
shuffle=True,
seed=123,
)
validation_gen = validation_datagen.flow_from_directory(
"data/validation/",
target_size=(img_height, img_width),
batch_size=batch_size1,
color_mode="rgb",
class_mode="binary",
shuffle=True,
seed=123,
)
test_gen = test_datagen.flow_from_directory(
"data/test/",
target_size=(img_height, img_width),
batch_size=batch_size1,
color_mode="rgb",
class_mode="binary",
shuffle=True,
seed=123,
)
model.summary()
history = model.fit(
train_gen,
steps_per_epoch=train_examples//batch_size1,
epochs=1,
validation_data=validation_gen,
validation_steps=validation_examples//batch_size1,
)
model.evaluate(validation_gen, verbose=2)
model.evaluate(test_gen, verbose=2)