Skip to content

Commit feb03b4

Browse files
committed
Merge pull request jikexueyuanwiki#141 from wenquan0hf/master
update by jike
2 parents 130a438 + 3f84b69 commit feb03b4

File tree

8 files changed

+7
-568
lines changed

8 files changed

+7
-568
lines changed

SOURCE/get_started/basic_usage.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -221,7 +221,7 @@ input3 = tf.constant(5.0)
221221
intermed = tf.add(input2, input3)
222222
mul = tf.mul(input1, intermed)
223223

224-
with tf.Session():
224+
with tf.Session() as sess:
225225
result = sess.run([mul, intermed])
226226
print result
227227

@@ -255,7 +255,7 @@ with tf.Session() as sess:
255255

256256
for a larger-scale example of feeds.
257257
如果没有正确提供 feed, `placeholder()` 操作将会产生错误.
258-
[MNIST 全连通 feed 教程](tensorflow-zh/SOURCE/tutorials/mnist_tf.md)
258+
MNIST 全连通 [feed 教程](http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_tf.html)
259259
([source code](https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/g3doc/tutorials/mnist/fully_connected_feed.py))
260260
给出了一个更大规模的使用 feed 的例子.
261261

SOURCE/get_started/introduction.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -49,10 +49,10 @@ MNIST 模型, 请阅读高级教程 (红色药丸链接). 如果你以前从未
4949
(蓝色药丸链接). 如果你的水平介于这两类人之间, 我们建议你先快速浏览初级教程, 然后再阅读高级教程.
5050

5151
<div style="width:100%; margin:auto; margin-bottom:10px; margin-top:20px; display: flex; flex-direction: row">
52-
<a href="tensorflow-zh/SOURCE/tutorials/mnist_beginners.md" title="面向机器学习初学者的 MNIST 初级教程">
52+
<a href="http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html" title="面向机器学习初学者的 MNIST 初级教程">
5353
<img style="flex-grow:1; flex-shrink:1; border: 1px solid black;" src="../images/blue_pill.png" alt="面向机器学习初学者的 MNIST 初级教程" />
5454
</a>
55-
<a href="tensorflow-zh/SOURCE/tutorials/mnist_pros.md" title="面向机器学习专家的 MNIST 高级教程">
55+
<a href="http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_pros.html" title="面向机器学习专家的 MNIST 高级教程">
5656
<img style="flex-grow:1; flex-shrink:1; border: 1px solid black;" src="../images/red_pill.png" alt="面向机器学习专家的 MNIST 高级教程" />
5757
</a>
5858
</div>

SOURCE/how_tos/overview.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -64,7 +64,7 @@ TensorFlow 已经提供一整套节点操作()operation),你可以在你的
6464

6565
翻译:[Terence Cooper](https://github.com/TerenceCooper)
6666

67-
校对:[lonlonago]( https://github.com/lonlonago)
67+
校对:[lonlonago](https://github.com/lonlonago)
6868
<div class='sections-order' style="display: none;">
6969
<!-- variables/index.md -->
7070
<!-- ../tutorials/mnist/tf/index.md -->

SOURCE/images/word2vec2.png

10.9 KB
Loading

SOURCE/tutorials/mnist_beginners.md

-241
Large diffs are not rendered by default.

SOURCE/tutorials/mnist_pros.md

-277
Large diffs are not rendered by default.

SOURCE/tutorials/word2vec.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@ Word2vec是一种可以进行高效率词嵌套学习的预测模型。其两种
4444

4545
**score(w_t,h)** 计算了文字 **w_t** 和 上下文 **h** 的相容性(通常使用向量积)。我们使用对数似然函数来训练训练集的最大值,比如通过:
4646

47-
![](../images/vr2.png)
47+
![](../images/word2vec2.png)
4848

4949
这里提出了一个解决语言概率模型的合适的通用方法。然而这个方法实际执行起来开销非常大,因为我们需要去计算并正则化当前上下文环境 **h** 中所有其他 **V** 单词 **w'** 的概率得分,*在每一步训练迭代中*
5050

TOC.md

+1-44
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,3 @@
1-
<<<<<<< HEAD
21
- 起步
32
- [介绍](SOURCE/get_started/introduction.md)
43
- [下载及安装](SOURCE/get_started/os_setup.md)
@@ -38,46 +37,4 @@
3837
- [个人学习心得](SOURCE/personal.md)
3938

4039

41-
42-
=======
43-
- 起步
44-
- [简介](SOURCE/get_started/introduction.md)
45-
- [下载与安装](SOURCE/get_started/os_setup.md)
46-
- [基本使用](SOURCE/get_started/basic_usage.md)
47-
- 教程
48-
- [综述](SOURCE/tutorials/overview.md)
49-
- [MNIST 机器学习入门](SOURCE/tutorials/mnist_beginners.md)
50-
- [深入 MNIST](SOURCE/tutorials/mnist_pros.md)
51-
- [TensorFlow 运作方式入门](SOURCE/tutorials/mnist_tf.md)
52-
- [卷积神经网络](SOURCE/tutorials/deep_cnn.md)
53-
- [字词的向量表示](SOURCE/tutorials/word2vec.md)
54-
- [递归神经网络](SOURCE/tutorials/recurrent.md)
55-
- [曼德布洛特(Mandelbrot)集合](SOURCE/tutorials/mandelbrot.md)
56-
- [偏微分方程](SOURCE/tutorials/pdes.md)
57-
- [MNIST数据下载](SOURCE/tutorials/mnist_download.md)
58-
- 运作方式
59-
- [综述](SOURCE/how_tos/overview.md)
60-
- [变量:创建、初始化、保存和加载](SOURCE/how_tos/variables.md)
61-
- [TensorBoard:可视化学习](SOURCE/how_tos/summaries_and_tensorboard.md)
62-
- [TensorBoard:图表可视化](SOURCE/how_tos/graph_viz.md)
63-
- [数据读取](SOURCE/how_tos/reading_data.md)
64-
- [线程和队列](SOURCE/how_tos/threading_and_queues.md)
65-
- [添加新的Op](SOURCE/how_tos/adding_an_op.md)
66-
- [自定义数据读取](SOURCE/how_tos/new_data_formats.md)
67-
- [使用GPUs](SOURCE/how_tos/using_gpu.md)
68-
- [共享变量](SOURCE/how_tos/variable_scope.md)
69-
- 资源
70-
- [综述](SOURCE/resources/overview.md)
71-
- [BibTex 引用](SOURCE/resources/bib.md)
72-
- [应用实例](SOURCE/resources/uses.md)
73-
- [常见问题](SOURCE/resources/faq.md)
74-
- [术语表](SOURCE/resources/glossary.md)
75-
- [Tensor的阶、形状和类型](SOURCE/resources/dims_types.md)
76-
- 其他
77-
- [常见问题汇总](SOURCE/faq.md)
78-
- [相关资源](SOURCE/resource.md)
79-
- [个人学习心得](SOURCE/personal.md)
80-
81-
82-
83-
>>>>>>> upstream_localcache
40+

0 commit comments

Comments
 (0)