-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfuzzy_data_weighted.py
299 lines (263 loc) · 11.3 KB
/
fuzzy_data_weighted.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import csv
import random
class FuzzyNumber:
"""
Трапециевидное нечеткое число
Поля:
c1 (float): левый центр
c2 (float): правый центр
c1 <= c2
l (float): левый разброс
r (float): правый разброс
"""
def __init__(self, c1, c2, l, r):
self.c1 = c1
self.c2 = c2
self.l = l
self.r = r
def __str__(self):
return "(c1 = %.2f, c2 = %.2f, l = %.2f, r = %.2f)" % (self.c1, self.c2, self.l, self.r)
def __repr__(self):
return self.__str__()
def sqr_weighted_distance(a, b, w):
"""
Вычисляет квадрат взвешенного евклидова расстояния между векторами a и b
"""
assert(len(a) == len(b))
n = len(a)
assert(len(w) == n)
return sum([(w[i] ** 2) * (a[i] - b[i]) ** 2 for i in range(n)])
def sqr_weighted_distance_point_to_centroid(data, centroids, i, k, w):
# d(data[i].c1, centr[k].c1) ** 2
dc1_sq = sqr_weighted_distance([data[i][j].c1 for j in range(dim)], [centroids[k][j].c1 for j in range(dim)], w)
# d(data[i].c2, centr[k].c2) ** 2
dc2_sq = sqr_weighted_distance([data[i][j].c2 for j in range(dim)], [centroids[k][j].c2 for j in range(dim)], w)
# d(data[i].l, centr[k].l) ** 2
dl_sq = sqr_weighted_distance([data[i][j].l for j in range(dim)], [centroids[k][j].l for j in range(dim)], w)
# d(data[i].r, centr[k].r) ** 2
dr_sq = sqr_weighted_distance([data[i][j].r for j in range(dim)], [centroids[k][j].r for j in range(dim)], w)
return dc1_sq, dc2_sq, dl_sq, dr_sq
def cmeans_fuzzy_data(data, c, m, error, maxiter):
"""
Кластеризация нечетких данных методом Fuzzy c-means
(см. doi.org/10.1016/j.csda.2010.09.013)
data: list(list(FuzzyNumber)), size N_samples, N_features
c: int
Число кластеров
m: float
Степенной параметр фаззификации
error: float
Допустимая разница двух последовательных приближений (в условии остановки)
maxiter: int
Максимальное число итераций
Возвращает:
centers, membership_degrees, w
centers: list(list(FuzzyNumber)), size c, N_features
Координаты центров кластеров
membership_degrees: list(list(float)), size N_samples, c
Меры принадлежности точек к кластерам
w: list(float)
Веса признаков
A: list(float)
Компоненты целевого функционала
"""
# размер выборки
data_size = len(data)
# размерность пространства признаков
dim = len(data[0])
# центроиды - массив нечетких чисел размерности c, dim
centroids = [[FuzzyNumber(0, 0, 0, 0)] * dim for _ in range(c)]
# меры принадлежности точек к кластерам - массив чисел от 0 до 1 размерности data_size, c
# сумма мер принадлежности по всем кластерам равна 1
u = [[] for _ in range(data_size)]
for i in range(data_size):
# генерируем случайные меры принадлежности u[i] и считаем их сумму s
s = 0
for j in range(c):
x = random.random()
u[i].append(x)
s += x
# обеспечиваем условие: сумма мер принадлежности равна 1
for j in range(c):
u[i][j] /= s
# веса признаков
w = [1 / dim for j in range(dim)]
#w = [1, 1, 1, 0.6, 0.6, 0.6, 1, 0.6, 0.6, 0.6]
sum_w = sum(w)
for j in range(dim):
w[j] /= sum_w
for iter in range(maxiter):
# вычисляем нечеткие центроиды (из условия оптимальности функционала качества)
for k in range(c):
# считаем сумму m-х степеней мер принадлежности по всем точкам выборки
s = 0
for i in range(data_size):
s += u[i][k] ** m
for j in range(dim):
# усредняем data[i][j] с весами u[i][k] ** m
centroids[k][j] = FuzzyNumber(0, 0, 0, 0)
for i in range(data_size):
centroids[k][j].c1 += (u[i][k] ** m) * data[i][j].c1
centroids[k][j].c2 += (u[i][k] ** m) * data[i][j].c2
centroids[k][j].l += (u[i][k] ** m) * data[i][j].l
centroids[k][j].r += (u[i][k] ** m) * data[i][j].r
centroids[k][j].c1 /= s
centroids[k][j].c2 /= s
centroids[k][j].l /= s
centroids[k][j].r /= s
# вычисляем весовые коэффициенты wc и ws
numerator = 0
denominator = 0
for i in range(data_size):
for k in range(c):
dc1_sq, dc2_sq, dl_sq, dr_sq = sqr_weighted_distance_point_to_centroid(data, centroids, i, k, w)
term1 = (u[i][k] ** m) * (dl_sq + dr_sq)
numerator += term1
term2 = (u[i][k] ** m) * (dc1_sq + dc2_sq + dl_sq + dr_sq)
denominator += term2
wc = max(numerator / denominator, 0.5)
ws = 1 - wc
# вычисляем меры принадлежности точек к кластерам
new_u = [[None] * c for _ in range(data_size)]
for i in range(data_size):
s = 0
for k in range(c):
dc1_sq, dc2_sq, dl_sq, dr_sq = sqr_weighted_distance_point_to_centroid(data, centroids, i, k, w)
s += ( (wc ** 2) * (dc1_sq + dc2_sq) + (ws ** 2) * (dl_sq + dr_sq) ) ** (-1 / (m - 1))
for k in range(c):
dc1_sq, dc2_sq, dl_sq, dr_sq = sqr_weighted_distance_point_to_centroid(data, centroids, i, k, w)
term = ( (wc ** 2) * (dc1_sq + dc2_sq) + (ws ** 2) * (dl_sq + dr_sq) ) ** (-1 / (m - 1))
new_u[i][k] = term / s
# обновляем меры принадлежности
for i in range(data_size):
for k in range(c):
u[i][k] = new_u[i][k]
# вычисляем компоненты функционала: J = sum(w_j^2 * A_j)
A = [0] * dim
for j in range(dim):
A[j] = 0
for i in range(data_size):
for k in range(c):
A[j] += (u[i][k] ** m) * (
(wc ** 2) * (
(data[i][j].c1 - centroids[k][j].c1) ** 2 + (data[i][j].c2 - centroids[k][j].c2) ** 2)
+ (ws ** 2) * (
(data[i][j].l - centroids[k][j].l) ** 2 + (data[i][j].r - centroids[k][j].r) ** 2) )
# вычисляем веса признаков
# s = 0
# for j in range(dim):
# s += 1 / A[j]
# for j in range(dim):
# w[j] = (1 / A[j]) / s
return centroids, u, w, A
def fuzzify(val):
"""
Возвращает нечеткое число, соответствующее четкому значению val
"""
if val == 0:
c1 = val
c2 = val
l = 0
r = 1
elif val == 5:
c1 = val
c2 = val
l = 1
r = 0
else:
c1 = val
c2 = val
l = 1
r = 1
return FuzzyNumber(c1, c2, l, r)
dim = 10 # размерность пространства признаков
# чтение входных данных
with open("data.csv") as fp:
reader = csv.reader(fp, delimiter=";")
next(reader, None) # пропустить заголовки
data_str = [row for row in reader]
# преобразование данных в числовой формат
data_size = len(data_str) # число точек для кластеризации
data = [[] for _ in range(data_size)]
for i in range(data_size):
data[i] = list(map(int, data_str[i]))
assert(len(data[i]) == dim)
# фаззификация данных
fdata = [[] for _ in range(data_size)]
for i in range(data_size):
for j in range(dim):
fdata[i].append(fuzzify(data[i][j]))
# кластеризация
clust_c = 3 # число кластеров
clust_m = 1.3 # степенной параметр фаззификации
clust_error = 1e-5
clust_maxiter = 1000
centers, membership_degrees, w, A = cmeans_fuzzy_data(fdata, clust_c, clust_m, clust_error, clust_maxiter)
print("Центроиды:\n", centers)
print("Меры принадлежности точек к кластерам:\n", membership_degrees)
with open("clustering_result.txt", "wt") as fp:
fp.write('Веса признаков:\n')
for j in range(dim):
fp.write(str(w[j]))
fp.write(" ")
fp.write('\nКомпоненты функционала:\n')
for j in range(dim):
fp.write("%.3f " % A[j])
fp.write("\n\n")
fp.write('Центроиды:\n')
for cntr in centers:
for fuz_number in cntr:
fp.write(str(fuz_number))
fp.write('; ')
fp.write('\n')
fp.write('\n\nМеры принадлежности точек к кластерам:\n')
for sample_point in membership_degrees:
for x in sample_point:
fp.write(str(x))
fp.write(" ")
fp.write('\n')
threshold = 0.6
clusters_points = [[] for _ in range(clust_c)]
outliers = []
for point_index, point_memberships in enumerate(membership_degrees):
best_cluster = None
for cluster_index, mmbr in enumerate(point_memberships):
if mmbr > threshold:
best_cluster = cluster_index
if best_cluster is not None:
clusters_points[best_cluster].append(point_index)
else:
outliers.append(point_index)
fp.write('\n\n\n')
for cluster_index in range(clust_c):
fp.write('Кластер ')
fp.write(str(cluster_index + 1))
fp.write(" (")
for fuz_number in centers[cluster_index]:
x = (fuz_number.c1 + fuz_number.c2) / 2 + (fuz_number.r - fuz_number.l) / 4 # среднее значение нечеткого числа
fp.write('%.2f' % x)
fp.write(", ")
fp.write(")")
fp.write(':\n')
for point_index in clusters_points[cluster_index]:
for x in membership_degrees[point_index]:
fp.write(str(x))
fp.write(" ")
fp.write(" (")
for x in data[point_index]:
fp.write(str(x))
fp.write(" ")
fp.write(")")
fp.write("\n")
fp.write("\n")
fp.write("Остальные точки:\n")
for point_index in outliers:
for x in membership_degrees[point_index]:
fp.write(str(x))
fp.write(" ")
fp.write(" (")
for x in data[point_index]:
fp.write(str(x))
fp.write(" ")
fp.write(")")
fp.write("\n")