@@ -73,22 +73,6 @@ theorem Ideal.le_add {S : Type*} [CommRing S] (a b c d : Ideal S) (hab : a ≤ b
7373 · apply le_trans hab (@le_sup_left _ _ _ _)
7474 · apply le_trans hcd (@le_sup_right _ _ _ _)
7575
76- theorem not_coprime_not_top {S : Type *} [CommRing S] (a b : Ideal S) :
77- ¬IsCoprime a b ↔ a + b ≠ ⊤ := by
78- apply not_congr
79- rw [IsCoprime]
80- constructor
81- · intro h
82- obtain ⟨x, y, hxy⟩ := h
83- rw [eq_top_iff_one]
84- have h2 : x * a + y * b ≤ a + b := by apply Ideal.le_add; all_goals apply mul_le_left
85- apply h2
86- rw [hxy]
87- simp
88- · intro h
89- refine ⟨1 , 1 , ?_⟩
90- simpa
91-
9276open IsPrimitiveRoot
9377
9478theorem prim_coe (ζ : R) (hζ : IsPrimitiveRoot ζ p) : IsPrimitiveRoot (ζ : CyclotomicField p ℚ) p :=
@@ -268,11 +252,10 @@ lemma fltIdeals_coprime2_lemma [Fact p.Prime] (ph : 5 ≤ p) {x y : ℤ} {η₁
268252theorem fltIdeals_coprime2 [Fact p.Prime] (ph : 5 ≤ p) {x y : ℤ} {η₁ η₂ : R}
269253 (hη₁ : η₁ ∈ nthRootsFinset p 1 )
270254 (hη₂ : η₂ ∈ nthRootsFinset p 1 ) (hdiff : η₁ ≠ η₂) (hp : IsCoprime x y)
271- (hp2 : ¬(p : ℤ) ∣ (x + y : ℤ)) (hwlog : η₁ ≠ 1 ) : IsCoprime (fltIdeals p x y hη₁)
272- (fltIdeals p x y hη₂) := by
273- apply not_not.mp
274- rw [not_coprime_not_top, not_not]
275- exact fltIdeals_coprime2_lemma ph hη₁ hη₂ hdiff hp hp2 hwlog
255+ (hp2 : ¬(p : ℤ) ∣ (x + y : ℤ)) (hwlog : η₁ ≠ 1 ) :
256+ IsCoprime (fltIdeals p x y hη₁) (fltIdeals p x y hη₂) := by
257+ rw [Ideal.isCoprime_iff_add]
258+ simpa using fltIdeals_coprime2_lemma ph hη₁ hη₂ hdiff hp hp2 hwlog
276259
277260theorem fltIdeals_coprime (hpri : p.Prime) (p5 : 5 ≤ p) {x y z : ℤ}
278261 (H : x ^ p + y ^ p = z ^ p) {η₁ η₂ : R} (hxy : IsCoprime x y)
0 commit comments