Skip to content

Commit 09eea71

Browse files
chore: drop not_coprime_not_top
1 parent 05ead6b commit 09eea71

File tree

1 file changed

+4
-21
lines changed

1 file changed

+4
-21
lines changed

FltRegular/NumberTheory/Cyclotomic/CyclRat.lean

Lines changed: 4 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -73,22 +73,6 @@ theorem Ideal.le_add {S : Type*} [CommRing S] (a b c d : Ideal S) (hab : a ≤ b
7373
· apply le_trans hab (@le_sup_left _ _ _ _)
7474
· apply le_trans hcd (@le_sup_right _ _ _ _)
7575

76-
theorem not_coprime_not_top {S : Type*} [CommRing S] (a b : Ideal S) :
77-
¬IsCoprime a b ↔ a + b ≠ ⊤ := by
78-
apply not_congr
79-
rw [IsCoprime]
80-
constructor
81-
· intro h
82-
obtain ⟨x, y, hxy⟩ := h
83-
rw [eq_top_iff_one]
84-
have h2 : x * a + y * b ≤ a + b := by apply Ideal.le_add; all_goals apply mul_le_left
85-
apply h2
86-
rw [hxy]
87-
simp
88-
· intro h
89-
refine ⟨1, 1, ?_⟩
90-
simpa
91-
9276
open IsPrimitiveRoot
9377

9478
theorem prim_coe (ζ : R) (hζ : IsPrimitiveRoot ζ p) : IsPrimitiveRoot (ζ : CyclotomicField p ℚ) p :=
@@ -268,11 +252,10 @@ lemma fltIdeals_coprime2_lemma [Fact p.Prime] (ph : 5 ≤ p) {x y : ℤ} {η₁
268252
theorem fltIdeals_coprime2 [Fact p.Prime] (ph : 5 ≤ p) {x y : ℤ} {η₁ η₂ : R}
269253
(hη₁ : η₁ ∈ nthRootsFinset p 1)
270254
(hη₂ : η₂ ∈ nthRootsFinset p 1) (hdiff : η₁ ≠ η₂) (hp : IsCoprime x y)
271-
(hp2 : ¬(p : ℤ) ∣ (x + y : ℤ)) (hwlog : η₁ ≠ 1) : IsCoprime (fltIdeals p x y hη₁)
272-
(fltIdeals p x y hη₂) := by
273-
apply not_not.mp
274-
rw [not_coprime_not_top, not_not]
275-
exact fltIdeals_coprime2_lemma ph hη₁ hη₂ hdiff hp hp2 hwlog
255+
(hp2 : ¬(p : ℤ) ∣ (x + y : ℤ)) (hwlog : η₁ ≠ 1) :
256+
IsCoprime (fltIdeals p x y hη₁) (fltIdeals p x y hη₂) := by
257+
rw [Ideal.isCoprime_iff_add]
258+
simpa using fltIdeals_coprime2_lemma ph hη₁ hη₂ hdiff hp hp2 hwlog
276259

277260
theorem fltIdeals_coprime (hpri : p.Prime) (p5 : 5 ≤ p) {x y z : ℤ}
278261
(H : x ^ p + y ^ p = z ^ p) {η₁ η₂ : R} (hxy : IsCoprime x y)

0 commit comments

Comments
 (0)