File tree Expand file tree Collapse file tree 1 file changed +12
-0
lines changed
Expand file tree Collapse file tree 1 file changed +12
-0
lines changed Original file line number Diff line number Diff line change @@ -52,6 +52,18 @@ theorem image_symmDiff [DecidableEq β] {f : α → β} (s t : Finset α) (hf :
5252 (s ∆ t).image f = s.image f ∆ t.image f :=
5353 mod_cast Set.image_symmDiff hf s t
5454
55+ /-- See `symmDiff_subset_sdiff'` for the swapped version of this. -/
56+ lemma symmDiff_subset_sdiff : s \ t ⊆ s ∆ t := subset_union_left
57+
58+ /-- See `symmDiff_subset_sdiff` for the swapped version of this. -/
59+ lemma symmDiff_subset_sdiff' : t \ s ⊆ s ∆ t := subset_union_right
60+
61+ lemma symmDiff_subset_union : s ∆ t ⊆ s ∪ t := symmDiff_le_sup (α := Finset α)
62+
63+ lemma symmDiff_eq_union_iff (s t : Finset α) : s ∆ t = s ∪ t ↔ Disjoint s t := symmDiff_eq_sup s t
64+
65+ lemma symmDiff_eq_union (h : Disjoint s t) : s ∆ t = s ∪ t := Disjoint.symmDiff_eq_sup h
66+
5567end SymmDiff
5668
5769end Finset
You can’t perform that action at this time.
0 commit comments