-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy patheval_direct.py
334 lines (261 loc) · 15.6 KB
/
eval_direct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import os
import argparse
import yaml
import numpy as np
import pandas as pd
from scipy.interpolate import interp1d
from collections import defaultdict as dd
import copy
import gc
import pickle
from pathlib import Path
from tqdm import tqdm
import matplotlib.pyplot as plt
import torch
from torch.utils.data import DataLoader, TensorDataset
import lightning.pytorch as pl
from lightning.pytorch import loggers as pl_loggers
from lightning.pytorch.callbacks import ModelCheckpoint
pl.seed_everything(42)
import sys
sys.path.append('..')
import warnings
warnings.filterwarnings('ignore')
from chaosbench import dataset, config, utils, criterion
from chaosbench.models import model
def interpolate(values, indices):
"""Interpolate in between values if delta_t is not dense"""
# First, we check if there are NaN values (i.e., no param/level combination in prediction)
has_nan = np.any(np.isnan(values))
new_indices = np.arange(indices[0], indices[-1])
## If yes, fill everything with nan
if has_nan:
new_values = np.full(len(new_indices), np.nan)
## Otherwise, interpolate
else:
f = interp1d(indices, values, bounds_error=False)
new_values = f(new_indices)
return new_values
def main(args):
"""
Evaluation script given .yaml config and trained model checkpoint (for direct scheme)
You can also provide a list from lra5 and oras5 if you want some or all of their parameters predicted,
e.g., python eval_direct.py --model_name <model_name> --eval_years <eval_years> --version_nums [...] --task_num <task_num> --lra5 [...] --oras5 [...]
Example usage:
(Data-driven models)
1) `python eval_direct.py --model_name unet_s2s --eval_years 2022 --version_nums 0 4 5 6 7 8 9 10 11 12 --task_num 1`
2) `python eval_direct.py --model_name unet_s2s --eval_years 2022 --version_nums 2 13 14 15 16 17 18 19 20 21 --task_num 2`
(External predictions)
3) `python eval_direct.py --model_name climax --eval_years 2022 --task_num 1`
"""
assert args.task_num in [1, 2]
print(f'Evaluating reanalysis against {args.model_name}...')
#########################################
####### Evaluation initialization #######
#########################################
IS_AI_MODEL, IS_PREDICTION = False, False
BATCH_SIZE = 32
DELTA_T = np.array([1, 5, 10, 15, 20, 25, 30, 35, 40, 44])
## Prepare directory to load model
log_dir = Path('logs') / args.model_name
ALL_PARAM_LIST = {'era5': utils.get_param_level_list(), 'lra5': config.LRA5_PARAMS, 'oras5': config.ORAS5_PARAMS}
## Case 1: Data-driven model
if 's2s' in args.model_name:
IS_AI_MODEL = True
PARAM_LIST = {'era5': utils.get_param_level_list(), 'lra5': args.lra5, 'oras5': args.oras5}
## Retrieve hyperparameters
config_filepath = Path(f'chaosbench/configs/{args.model_name}.yaml')
with open(config_filepath, 'r') as config_f:
hyperparams = yaml.load(config_f, Loader=yaml.FullLoader)
model_args = hyperparams['model_args']
data_args = hyperparams['data_args']
## Initialize model given hyperparameters
assert len(args.version_nums) == len(DELTA_T)
## Load each model from checkpoint
baselines = list()
for version_num in args.version_nums:
ckpt_filepath = log_dir / f'lightning_logs/version_{version_num}/checkpoints/'
ckpt_filepath = list(ckpt_filepath.glob('*.ckpt'))[0]
baseline = model.S2SBenchmarkModel(model_args=model_args, data_args=data_args)
baseline = baseline.load_from_checkpoint(ckpt_filepath)
baselines.append(copy.deepcopy(baseline.eval()))
## Prepare input/output dataset
lra5_vars, oras5_vars = baseline.hparams.get('land_vars', []), baseline.hparams.get('ocean_vars', [])
input_dataset = dataset.S2SObsDataset(
years=args.eval_years, n_step=config.N_STEPS-1, land_vars=lra5_vars, ocean_vars=oras5_vars
)
input_dataloader = DataLoader(input_dataset, batch_size=BATCH_SIZE, shuffle=False)
output_dataset = dataset.S2SObsDataset(
years=args.eval_years, n_step=config.N_STEPS-1,
land_vars=config.LRA5_PARAMS, ocean_vars=config.ORAS5_PARAMS, is_normalized=False
)
output_dataloader = DataLoader(output_dataset, batch_size=BATCH_SIZE, shuffle=False)
## Case 2: External prediction (e.g., ClimaX)
else:
IS_EXTERNAL = True
PARAM_LIST = {'era5': config.CLIMAX_VARS if args.task_num == 1 else config.HEADLINE_VARS, 'lra5': args.lra5, 'oras5': args.oras5}
input_dataset = dataset.S2SObsDataset(
years=args.eval_years, n_step=config.N_STEPS-1,
land_vars=config.LRA5_PARAMS, ocean_vars=config.ORAS5_PARAMS, is_normalized=False
)
input_dataloader = DataLoader(input_dataset, batch_size=BATCH_SIZE, shuffle=False)
output_dataset = dataset.S2SObsDataset(
years=args.eval_years, n_step=config.N_STEPS-1,
land_vars=config.LRA5_PARAMS, ocean_vars=config.ORAS5_PARAMS, is_normalized=False
)
output_dataloader = DataLoader(output_dataset, batch_size=BATCH_SIZE, shuffle=False)
## List external prediction
preds_filepath = log_dir / 'preds' / f'task{args.task_num}'
preds_files = list(preds_filepath.glob('*.pkl'))
preds_files.sort()
## Load prediction
all_preds = list()
for file_path in preds_files:
with open(file_path, 'rb') as file:
data = pickle.load(file)
data = data['pred']
all_preds.append(data)
all_preds = np.array(all_preds)
##################### Initialize criteria #####################
RMSE = criterion.RMSE()
Bias = criterion.Bias()
ACC = criterion.ACC()
SSIM = criterion.MS_SSIM()
SpecDiv = criterion.SpectralDiv(percentile=0.9, is_train=False)
SpecRes = criterion.SpectralRes(percentile=0.9, is_train=False)
###############################################################
######################################
####### Evaluation main script #######
######################################
## All metric placeholders
all_rmse, all_bias, all_acc, all_ssim, all_sdiv, all_sres = list(), list(), list(), list(), list(), list()
batch_idx = 0
for input_batch, output_batch in tqdm(zip(input_dataloader, output_dataloader), total=len(input_dataloader)):
_, preds_x, preds_y = input_batch
timestamps, truth_x, truth_y = output_batch
# Pre-processing (e.g., get day-of-years for climatology-related metrics...)
doys = utils.get_doys_from_timestep(timestamps)
assert preds_y.size(1) == truth_y.size(1)
N_STEPS = truth_y.size(1)
## Step metric placeholders
step_rmse, step_bias, step_acc, step_ssim, step_sdiv, step_sres = dict(), dict(), dict(), dict(), dict(), dict()
for step_idx, delta in enumerate(DELTA_T):
all_param_idx, param_idx = 0, 0
with torch.no_grad():
############## Getting current-step preds/targs ##############
if IS_AI_MODEL:
preds = baselines[step_idx](preds_x.to(config.device))
targs = truth_y[:, delta-1]
else:
preds = all_preds[step_idx]
targs = truth_y[:, delta-1]
##############################################################
## Extract metric for each param/level
for i, (param_class, params) in enumerate(ALL_PARAM_LIST.items()):
for j, param in enumerate(params):
### Some param/level pairs are not available
param_exist = param in PARAM_LIST[param_class]
## Handling predictions
if IS_AI_MODEL:
unique_preds = preds[:, param_idx] if param_exist else torch.full((BATCH_SIZE, 121, 240), torch.nan)
unique_preds = utils.denormalize(unique_preds, param, param_class)
unique_preds = unique_preds.double().to(config.device)
else:
param_name, start_idx, end_idx = param.replace('-', '_'), int(batch_idx * BATCH_SIZE), int((batch_idx + 1) * BATCH_SIZE)
unique_preds = torch.tensor(preds[param_name])[start_idx:end_idx] if param_exist else torch.full((BATCH_SIZE, 121, 240), torch.nan)
unique_preds = unique_preds.double().to(config.device)
## Handling labels
unique_labels = targs[:, all_param_idx]
unique_labels = unique_labels.double().to(config.device)
################################## Criterion 1: RMSE #####################################
error = RMSE(unique_preds, unique_labels).cpu().numpy()
################################## Criterion 2: Bias #####################################
bias = Bias(unique_preds, unique_labels).cpu().numpy()
################################## Criterion 3: ACC ######################################
acc = ACC(unique_preds, unique_labels, doys[:, delta-1], param, param_class).cpu().numpy()
################################## Criterion 4: SSIM ######################################
ssim = SSIM(unique_preds, unique_labels).cpu().numpy()
################################ Criterion 5: SpecDiv #####################################
sdiv = SpecDiv(unique_preds, unique_labels).cpu().numpy()
################################ Criterion 6: SpecRes #####################################
sres = SpecRes(unique_preds, unique_labels).cpu().numpy()
try:
step_rmse[param].extend([error])
step_bias[param].extend([bias])
step_acc[param].extend([acc])
step_ssim[param].extend([ssim])
step_sdiv[param].extend([sdiv])
step_sres[param].extend([sres])
except:
step_rmse[param] = [error]
step_bias[param] = [bias]
step_acc[param] = [acc]
step_ssim[param] = [ssim]
step_sdiv[param] = [sdiv]
step_sres[param] = [sres]
all_param_idx += 1
param_idx = param_idx + 1 if param_exist else param_idx
all_rmse.append(step_rmse)
all_bias.append(step_bias)
all_acc.append(step_acc)
all_ssim.append(step_ssim)
all_sdiv.append(step_sdiv)
all_sres.append(step_sres)
batch_idx += 1 # keeping track of batch_id to subset prediction index
## Combine metrics across batch
merged_rmse, merged_bias, merged_acc, \
merged_ssim, merged_sdiv, merged_sres = dd(list), dd(list), dd(list), dd(list), dd(list), dd(list)
for d_rmse, d_bias, d_acc, d_ssim, d_sdiv, d_sres in zip(all_rmse, all_bias, all_acc, all_ssim, all_sdiv, all_sres):
for (rmse_k, rmse_v), (bias_k, bias_v), (acc_k, acc_v), \
(ssim_k, ssim_v), (sdiv_k, sdiv_v), (sres_k, sres_v) in zip(d_rmse.items(),
d_bias.items(),
d_acc.items(),
d_ssim.items(),
d_sdiv.items(),
d_sres.items()):
merged_rmse[rmse_k].append(rmse_v)
merged_bias[bias_k].append(bias_v)
merged_acc[acc_k].append(acc_v)
merged_ssim[ssim_k].append(ssim_v)
merged_sdiv[sdiv_k].append(sdiv_v)
merged_sres[sres_k].append(sres_v)
## Compute the mean metrics over valid evaluation time horizon (for each timestep) along batch
## Also interpolate given gaps in delta_t
merged_rmse, \
merged_bias, \
merged_acc, \
merged_ssim, \
merged_sdiv, \
merged_sres = dict(merged_rmse), dict(merged_bias), dict(merged_acc), dict(merged_ssim), dict(merged_sdiv), dict(merged_sres)
for (rmse_k, rmse_v), (bias_k, bias_v), (acc_k, acc_v), \
(ssim_k, ssim_v), (sdiv_k, sdiv_v), (sres_k, sres_v) in zip(merged_rmse.items(),
merged_bias.items(),
merged_acc.items(),
merged_ssim.items(),
merged_sdiv.items(),
merged_sres.items()):
merged_rmse[rmse_k] = interpolate(np.array(merged_rmse[rmse_k]).mean(axis=0), DELTA_T - 1)
merged_bias[bias_k] = interpolate(np.array(merged_bias[bias_k]).mean(axis=0), DELTA_T - 1)
merged_acc[acc_k] = interpolate(np.array(merged_acc[acc_k]).mean(axis=0), DELTA_T - 1)
merged_ssim[ssim_k] = interpolate(np.array(merged_ssim[ssim_k]).mean(axis=0), DELTA_T - 1)
merged_sdiv[sdiv_k] = interpolate(np.array(merged_sdiv[sdiv_k]).mean(axis=0), DELTA_T - 1)
merged_sres[sres_k] = interpolate(np.array(merged_sres[sres_k]).mean(axis=0), DELTA_T - 1)
## Save metrics
eval_dir = log_dir / 'eval' / f'direct_{args.task_num}'
eval_dir.mkdir(parents=True, exist_ok=True)
pd.DataFrame(merged_rmse).to_csv(eval_dir / f'rmse_{args.model_name}.csv', index=False)
pd.DataFrame(merged_bias).to_csv(eval_dir / f'bias_{args.model_name}.csv', index=False)
pd.DataFrame(merged_acc).to_csv(eval_dir / f'acc_{args.model_name}.csv', index=False)
pd.DataFrame(merged_ssim).to_csv(eval_dir / f'ssim_{args.model_name}.csv', index=False)
pd.DataFrame(merged_sdiv).to_csv(eval_dir / f'sdiv_{args.model_name}.csv', index=False)
pd.DataFrame(merged_sres).to_csv(eval_dir / f'sres_{args.model_name}.csv', index=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', help='Name of the model either specified in your config file or external')
parser.add_argument('--eval_years', nargs='+', help='Provide the evaluation years')
parser.add_argument('--version_nums', nargs='+', help='Provide the version numbers')
parser.add_argument('--task_num', type=int, default=1, help='Task number, one of [1,2]')
parser.add_argument('--lra5', nargs='+', type=str, default=[], help='List of LRA5 variables to be evaluated')
parser.add_argument('--oras5', nargs='+', type=str, default=[], help='List of ORAS5 variables to be evaluated')
args = parser.parse_args()
main(args)