-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathsetting.py
49 lines (39 loc) · 1.42 KB
/
setting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import time
import re
import numpy as np
import h5py
maximumJobs = 7
command = ['python','./main.py','-epochs','5000','-batch','512','-nlayers','10','-nmlp','3','-nhidden','10','-L','32','-nrepeat','1','-savePeriod','100','-alpha','1','-skipHMC']
settings = [['-cuda',str(i)] for i in range(7)]
parameters = {"-T":[str(i/10) for i in range(20,28)],"-depthMERA":[str(i+1) for i in range(5)][::-1]}
def before():
#print("this is pre-process")
pass
def after():
#print("this is sub-process")
pass
def finish(result):
loss = []
std = []
for j in parameters['-depthMERA']:
tmploss = []
tmpstd = []
for i in parameters['-T']:
tmploss.append(result['-T '+i+' -depthMERA ' +j][-1][-2])
tmpstd.append(result['-T '+i+' -depthMERA ' +j][-1][-1])
loss.append(tmploss)
std.append(tmpstd)
print('loss:',loss)
print('std:',std)
loss = np.array(loss)
std = np.array(std)
with h5py.File("./core_result_Tfrom"+parameters['-T'][0]+"to"+parameters['-T'][-1]+"_depthMERAfrom"+parameters['-depthMERA'][0]+"to"+parameters['-depthMERA'][-1]+".hdf5","w") as f:
f.create_dataset('loss',data = loss)
f.create_dataset('std',data = std)
def process(result):
nums = []
for i in result[-2:-1]:
nums.append([float(s) for s in re.findall(r'-?\d+\.?\d*',i)])
return nums
if settings != []:
assert len(settings) == maximumJobs