-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathqa.py
106 lines (96 loc) · 3.91 KB
/
qa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import torch
from torch.utils.data import Dataset
from data.utils import load_hf_dataset, preprocess_chat_instance, add_dataset_index
class QADataset(Dataset):
def __init__(
self,
hf_args,
template_args,
tokenizer,
question_key="question",
answer_key="answer",
few_shot_dataset_hf_args=None,
max_length=512,
predict_with_generate=False,
):
super(QADataset, self).__init__()
self.tokenizer = tokenizer
self.max_length = max_length
self.data = load_hf_dataset(**hf_args)
self.data = add_dataset_index(self.data)
self.fs_data = None
if few_shot_dataset_hf_args is not None:
raw_data = load_hf_dataset(**few_shot_dataset_hf_args)
self.fs_data = {}
self.fs_data[question_key] = raw_data[question_key]
self.fs_data[answer_key] = raw_data[answer_key]
self.template_args = template_args
self.question_key = question_key
self.answer_key = answer_key
self.predict_with_generate = predict_with_generate
def __len__(self):
return len(self.data)
def _process_sample(self, question, answer, index=-1):
if self.fs_data is None:
prompt_msgs, response_msgs = [question], [answer]
else:
prompt_msgs = self.fs_data[self.question_key] + [question]
response_msgs = self.fs_data[self.answer_key] + [answer]
tokenized_data = preprocess_chat_instance(
self.tokenizer,
self.template_args,
prompt_msgs,
response_msgs,
self.max_length,
self.predict_with_generate,
)
item_dct = {
"input_ids": tokenized_data["input_ids"],
"labels": tokenized_data["labels"],
"attention_mask": tokenized_data["attention_mask"],
"index": index,
}
return item_dct
def __getitem__(self, idx):
question = self.data[idx][self.question_key]
answer = self.data[idx][self.answer_key]
index = self.data[idx]["index"]
if isinstance(answer, str):
item = self._process_sample(question=question, answer=answer, index=index)
elif isinstance(answer, list):
item = {}
for i, ans in enumerate(answer):
sample_item = self._process_sample(
question=question, answer=ans, index=index
)
item[i] = sample_item
else:
raise NotImplementedError("answer format not found")
return item
class QAwithIdkDataset(QADataset):
def __init__(self, idk_path, return_original=True, *args, **kwargs):
self.idk_path = idk_path
self.return_original = return_original
self.idk_responses = open(self.idk_path, "r").readlines()
super().__init__(*args, **kwargs)
def item_with_idk(self, question):
rand_pos = torch.randint(0, len(self.idk_responses), (1,)).item()
idk_response = self.idk_responses[rand_pos].strip()
idk_item = self._process_sample(question=question, answer=idk_response)
return idk_item
def __getitem__(self, idx):
item = super().__getitem__(idx)
question = self.data[idx][self.question_key]
if isinstance(item, dict):
return_item = {"original": item}
idk_item = self.item_with_idk(question)
return_item["alternate"] = idk_item
# return_item = [item, idk_item]
elif isinstance(item, list) or isinstance(item, tuple):
return_item = []
for sample_item in item:
return_item = {"original": sample_item}
idk_item = self.item_with_idk(question)
return_item["alternate"] = idk_item
# return_item.append([sample_item, idk_item])
return return_item if self.return_original else return_item["alternate"]