-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathunlearn.py
46 lines (41 loc) · 1.77 KB
/
unlearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
from torch.utils.data import Dataset
class ForgetRetainDataset(Dataset):
# https://github.com/OPTML-Group/SOUL/blob/main/src/dataset/Base.py
def __init__(self, forget, retain, anchor="forget"):
"""Wraps the forget retain dataset into unlearning dataset.
Args:
forget (Dataset): Forget Dataset
retain (Dataset): Retain Dataset
anchor (str, optional): Specifies which dataset to anchor while randomly sampling from the other dataset. Defaults to 'forget'.
"""
self.forget = forget
self.retain = retain
self.anchor = anchor
def __len__(self):
"""Ensures the sampled dataset matches the anchor dataset's length."""
if self.anchor == "forget":
assert self.forget is not None, ValueError(
"forget dataset can't be None when anchor=forget"
)
return len(self.forget)
elif self.anchor == "retain":
assert self.retain is not None, ValueError(
"retain dataset can't be None when anchor=retain"
)
return len(self.retain)
else:
raise NotImplementedError(f"{self.anchor} can be only forget or retain")
def __getitem__(self, idx):
item = {}
if self.anchor == "forget":
item["forget"] = self.forget[idx]
if self.retain:
retain_idx = torch.randint(0, len(self.retain), (1,)).item()
item["retain"] = self.retain[retain_idx]
elif self.anchor == "retain":
item["retain"] = self.retain[idx]
if self.forget:
forget_idx = torch.randint(0, len(self.forget), (1,)).item()
item["forget"] = self.forget[forget_idx]
return item