-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathggplot2_old.Rpres
724 lines (516 loc) · 13 KB
/
ggplot2_old.Rpres
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
<style>
.small-code pre code {
font-size: 0.75em;
}
</style>
ggplot2
========================================================
author: Etienne Low-Décarie
transition: rotate
January 5, 2017
Presentation: https://low-decarie.github.io/ggplot_workshop/#/
Code: https://github.com/low-decarie/ggplot_workshop
Without R
===

With R
===

Beautiful and flexible!
===

```{r fig.width=7, fig.height=6,echo=FALSE}
# img <- readPNG("./ggplot2_images/pretty_examples.png")
# grid.raster(img)
```
Outline (ggplot2)
===
1. Your first ggplot plot
+ basic scatter plot
+ Exercise 1
2. Grammar of graphics
+ More advanced plots
+ Available plot elements and when to use them
+ Exercise 2
***
Tomorrow:
3. Saving a plot
+ Exercise 3
+ Challenge
4. Expanding ggplot
5. Fine tuning your plot
+ colours
+ themes
6. Maps
A few pet peeves
===
- Always work from a script
- Use carriage returns and indentation
```{r eval=F}
object <- function(argument1="value1",
argument2="value2",
argument3="value3")
```
- Create your own new script
+ refer to provided code only if needed
+ don't just copy paste from the presentation
```{r fig.width=7, fig.height=6,echo=FALSE}
library(png)
library(grid)
```
Install/load ggplot2
===
```{r}
if(!require(ggplot2)){install.packages("ggplot2")}
require(ggplot2)
```
Your first ggplot
===
A basic scatter plot
```{r fig.width=3, fig.height=3, eval=F}
qplot(data=iris,
x=Sepal.Length,
y=Sepal.Width)
```
***
```{r fig.width=3, fig.height=3, echo=F}
qplot(data=iris,
x=Sepal.Length,
y=Sepal.Width)
```
Categorical x-axis
===
```{r fig.width=4, fig.height=4}
qplot(data=iris,
x=Species,
y=Sepal.Width)
```
Less basic scatter plot
===
```{r}
?qplot
```
Arguments
```
x
y
…
data
xlab
ylab
main
```
Less basic scatter plot
===
```{r fig.width=4, fig.height=4}
qplot(data=iris,
x=Sepal.Length,
xlab="Sepal Width (mm)",
y=Sepal.Width,
ylab="Sepal Length (mm)",
main="Sepal dimensions")
```
Exercise 1
===
produce a basic plot with built in data
```
CO2
?CO2
BOD
data()
```
WARNING: THERE ARE MULTIPLE CO2/co2 datasets
(CASE SENSITIVE)
<div class="centered">
<script src="countdown.js" type="text/javascript"></script>
<script type="application/javascript">
var myCountdown2 = new Countdown({
time: 300,
width:150,
height:80,
rangeHi:"minute" // <- no comma on last item!
});
</script>
</div>
Grammar of graphics (gg)
===
A graphic is made of elements (layers)
- data
- aesthetics (aes)
- transformation
- geoms (geometric objects)
- axis (coordinate system)
- scales
***

Aesthetics (aes) make data visible:
===
+ x,y : position along the x and y axis
+ colour: the colour of the point
+ group: what group a point belongs to
+ shape: the figure used to plot a point
+ linetype: the type of line used (solid, dashed, etc)
+ size: the size of the point or line
+ alpha: the transparency of the point
geometric objects(geoms)
===
+ point: scatterplot
+ line: line plot, where lines connect points by increasing x value
+ path: line plot, where lines connect points in sequence of appearance
+ boxplot: box-and-whisker plots, for categorical y data
+ bar: barplots
+ histogram: histograms (for 1-dimensional data)
Single element edit
===
Editing an element produces a new graph
e.g. just change the coordinate system
```{r fig.width=3, fig.height=3,echo=FALSE}
DF <- data.frame(variable = LETTERS[1:10], value = sample(10,
replace = TRUE))
p_bar <- ggplot(data=DF,
aes(x=variable,
fill=variable,
y=value))+
geom_bar(stat="identity")
print(p_bar)
p_polar <- p_bar + coord_polar()
print(p_polar)
```
How it works
===
- 1. create a simple plot object
```{r eval=FALSE}
plot.object<-qplot()
or
plot.object<-ggplot()
```
- 2. add graphical layers/complexity
```{r eval=FALSE}
plot.object<-plot.object+layer()
```
- 3. repeat step 2 until satisfied
- 4. print your object to screen (or to graphical device)
```{r eval=FALSE}
print(plot.object)
```
Scatter plot as an R object
===
```{r fig.width=3, fig.height=3,echo=T}
basic.plot<-qplot(data=iris,
x=Sepal.Length,
xlab="Sepal Width (mm)",
y=Sepal.Width,
ylab="Sepal Length (mm)",
main="Sepal dimensions")
print(basic.plot)
```
Using ggplot function
===
more powerful, more complicated
Note: aes() and geom_point()
```{r fig.width=4, fig.height=4}
basic.plot<- ggplot(data=iris)+
aes(x=Sepal.Length,
xlab="Sepal Width (mm)",
y=Sepal.Width,
ylab="Sepal Length (mm)",
main="Sepal dimensions")+
geom_point()
```
now required to use stat=""
Scatter plot with colour and shape
===
```{r fig.width=3, fig.height=3,echo=T}
basic.plot <- basic.plot+
aes(colour=Species,
shape=Species)
print(basic.plot)
```
Scatter plot with linear regression
===
Add a geom (eg. linear smooth)
```{r fig.width=3, fig.height=3,echo=T}
linear.smooth.plot <- basic.plot+
geom_smooth(method="lm", se=F)
print(linear.smooth.plot)
```
Exercise 2
===
produce a colorful plot containing linear regressions with built in data
```
CO2
?CO2
msleep
?msleep
OrchardSprays
data()
```
<div class="centered">
<script src="countdown.js" type="text/javascript"></script>
<script type="application/javascript">
var myCountdown3 = new Countdown({
time: 600,
width:150,
height:80,
rangeHi:"minute" // <- no comma on last item!
});
</script>
</div>
Available elements
===
http://docs.ggplot2.org
<iframe src="http://docs.ggplot2.org" width="1000" height="800">
<p>Your browser does not support iframes.</p>
</iframe>
Resources
===
cheatsheets: https://www.rstudio.com/resources/cheatsheets/
<iframe src="https://www.rstudio.com/resources/cheatsheets/" width="1000" height="800">
<p>Your browser does not support iframes.</p>
</iframe>
Exercise 3
===
Explore geoms and other plot elements with the data you have used
and/or your own data
```
msleep
?msleep
OrchardSprays
data()
```
<div class="centered">
<script src="countdown.js" type="text/javascript"></script>
<script type="application/javascript">
var myCountdown3 = new Countdown({
time: 300,
width:150,
height:80,
rangeHi:"minute" // <- no comma on last item!
});
</script>
</div>
Tomorrow
===
3. Saving a plot
+ Exercise 3
+ Challenge
4. Expanding ggplot
5. Fine tuning your plot
+ colours
+ themes
6. Maps (time permitting)
Saving plots
===
```{r eval=FALSE}
pdf("./Plots/todays_plots.pdf")
print(basic.plot)
print(plot.with.linear.smooth)
print(categorical.plot)
print(CO2.plot)
graphics.off()
```
all other base save functions available:
`bmp()`, `jpeg()`, etc
Saving plots
===
ggsave: saves last plot and guesses format from file name
```{r eval=FALSE}
ggsave("./Plots/todays_plots.jpeg", basic.plot)
```
Using facets and groups: the basic plot
===
```{r fig.width=8, fig.height=4,echo=T}
CO2.plot<-qplot(data=CO2,
x=conc,
y=uptake,
colour=Treatment)
print(CO2.plot)
```
Facets
===
```{r eval=FALSE}
plot.object<-plot.object + facet_grid(rows~columns)
```
```{r fig.width=8, fig.height=4,echo=T}
CO2.plot<-CO2.plot+facet_grid(.~Type)
print(CO2.plot)
```
Groups
===
Problems when adding the geom_line
```{r fig.width=8, fig.height=4,echo=T}
print(CO2.plot+geom_line())
```
Groups
===
Solution: specify groups
```{r fig.width=8, fig.height=4,echo=T}
CO2.plot<-CO2.plot+geom_line(aes(group=Plant))
print(CO2.plot)
```
Using the right tool for the right situation
===
base R `plot` function has methods for many different object types
```{r fig.width=3, fig.height=3,echo=T}
plot(iris)
```
Using the right tool for the right situation
===
base R `plot` function has methods for many different object types
```{r fig.width=3, fig.height=3,echo=T}
lm.SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi,
data = LifeCycleSavings)
plot(lm.SR)
```
Challenge
===
Find an interesting data set on Dryad.org, reproduce a figure from the article using ggplot2
Example: try to reproduce figure 1 and 4 from
Low-Décarie, E., Fussmann, G. F., Bell, G., Low-Decarie, E., Fussmann, G. F., Bell, G., Low-Décarie, E., Fussmann, G. F. & Bell, G. 2014 Aquatic primary production in a high-CO2 world. Trends Ecol. Evol. 29, 1–10.
[paper](http://www.sciencedirect.com/science/article/pii/S0169534714000433)
[data](http://datadryad.org/handle/10255/dryad.60481)
full scripts also available on github (old ugly code!)
Extending ggplot
===
ggplot can be extended for plotting specific classes of objects
`autoplot`
and
`fortify`
Extending ggplot
===
`ggfortify` provides `autoplot`and
`fortify` for common models
```{r fig.width=3, fig.height=3,echo=T, eval=F}
require(ggfortify)
autoplot(lm.SR)
```
***
```{r fig.width=5, fig.height=5,echo=F}
require(ggfortify)
autoplot(lm.SR)
```
===
```{r fig.width=3, fig.height=3,echo=T}
help(package=ggfortify)
```
Fine tunning: Scales
===
class: small-code
```{r fig.width=3, fig.height=3,echo=T}
CO2.plot +
scale_y_continuous(name = "CO2 uptake rate",
breaks = seq(5,50, by= 10),
labels = seq(5,50, by= 10),
trans="log10")
```
Fine tunning: Scales
===
```{r fig.width=3, fig.height=3,echo=T}
CO2.plot+
scale_colour_brewer()
```
Fine tunning: Scales
===
```{r fig.width=3, fig.height=3,echo=T}
CO2.plot+
scale_colour_manual(values=c("nonchilled"="red",
"chilled"="blue"))
```
Fine tunning: Scales
===
Bonus!!! Wes Anderson colour palette

Fine tunning: Scales
===
Bonus!!! Wes Anderson colour palette
```{r fig.width=3, fig.height=3,echo=T}
if(!require(devtools)) {install.packages("devtools")}
require(devtools)
if(!require(wesanderson)){
devtools::install_github("karthik/wesanderson")}
require(wesanderson)
```
Fine tunning: Scales
===
Bonus!!! Wes Anderson colour palette
```{r fig.width=3, fig.height=3,echo=T}
require(wesanderson)
basic.plot +
scale_color_manual(values = wesanderson::wes_palette("Darjeeling",3))
```
Fine tuning: Multiple plots
===
```{r fig.width=5, fig.height=5,echo=T}
if(!require(gridExtra)) {install.packages("gridExtra")}
require(gridExtra)
grid.arrange(basic.plot, CO2.plot)
```
Fine tuning: Multiple plots
===
class: small-code
Sub-plots can be aligned and matched in size
```{r fig.width=5, fig.height=5,echo=T}
basic.plot.table <- ggplot_gtable(ggplot_build(basic.plot))
CO2.plot.table <- ggplot_gtable(ggplot_build(CO2.plot))
maxWidth = grid::unit.pmax(basic.plot.table$widths[2:3],
CO2.plot.table$widths[2:3])
basic.plot.table$widths[2:3] <- as.list(maxWidth)
CO2.plot.table$widths[2:3] <- as.list(maxWidth)
```
Fine tuning: Multiple plots
===
Sub-plots can be aligned and matched in size
```{r fig.width=5, fig.height=5,echo=T}
grid.arrange(basic.plot.table,
CO2.plot.table,
ncol=1)
```
Fine tuning: Themes
===
`theme_set(theme())`
or
`plot+theme()`
```{r fig.width=8, fig.height=3,echo=T}
dark <- basic.plot+theme_dark()
minimal <- basic.plot+theme_minimal()
grid.arrange(basic.plot, dark, minimal, nrow=1)
```
Fine tuning: Themes
===
class: small-code
```{r fig.width=8, fig.height=3,echo=T}
mytheme <- theme_grey() +
theme(plot.title = element_text(colour = "red"))
mytheme_plot <- basic.plot + mytheme
grid.arrange(basic.plot, mytheme_plot, nrow=1)
```
Bonus: xkcd
===
<iframe src="http://xkcd.com" width="1000" height="800">
<p>Your browser does not support iframes.</p>
</iframe>
Bonus: xkcd
===
```{r fig.width=3, fig.height=3,eval=F}
#install.packages("xkcd")
#install xkcd font: "http://simonsoftware.se/other/xkcd.ttf"
#import font : font_import(pattern = "[X/x]kcd", prompt=FALSE)
#loadfonts()
require(xkcd)
require(extrafont)
xrange <- range(iris$Sepal.Length)
yrange <- range(iris$Sepal.Width)
print(basic.plot+
xkcdaxis(xrange,yrange)+
theme(text=element_text(family = "xkcd")))
```
Bonus: xkcd
===

Challenge
===
Using figure from previous challenge (or other dryad.org paper/data), edit figure to match a journal's style requirements
Example: try to reproduce Figure 3 in:
Lucek K, Sivasundar A, Roy D, Seehausen O (2013) Repeated and predictable patterns of ecotypic differentiation during a biological invasion: lake-stream divergence in parapatric Swiss stickleback. Journal of Evolutionary Biology 26(12): 2691–2709.
[paper](http://dx.doi.org/10.1111/jeb.12267)
[data](http://dx.doi.org/10.5061/dryad.0nh60)