-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathflight_simulator.py
963 lines (820 loc) · 38.4 KB
/
flight_simulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
import contextlib
with contextlib.redirect_stdout(None):
import pygame
import os
from pygame.locals import *
from math import cos, sin , exp, radians, sqrt, asin, degrees, ceil
from random import randint
# Initialize PyGame
pygame.init()
# Default screen size
info = pygame.display.Info()
W = info.current_w/2
H = info.current_h*2/3
# Set frames-by-second and simulation resolution
FPS = 60
# Configure the ground and runway
GROUND_HEIGHT = 2 # m
AIRPORTS = [0,8000,40000,60000,80000,100000,120000] # m
RUNWAY_HEIGHT = 5 # m
RUNWAY_LENGTH = 2200 # m
MARKINGS_LENGTH = 50 # m
CITY_EXTENSION = 25 # m
screen = pygame.display.set_mode((W,H), pygame.RESIZABLE)
pygame.display.set_caption('2D Flight simulator')
# Load and prepare background mountain sprites for parallax effect
bgs = []
bgsX = []
parallax_speed = [0.1,0.14,0.25,0.27,0.30,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.80,0.85]
bgYs = [1840, 1350, 1200, 780, 720, 400, 400, 240, 240, 240, 40, 190, 37, 0, 0,-20]
bgYs = [x/8 for x in bgYs]
vertical_scroll_factor = 0.15
for n in range(len(bgYs)-1,-1,-1):
bg = pygame.image.load(os.path.join('assets', f'pixel_parallax_{n}.png')).convert_alpha()
scale = 0.3
bg = pygame.transform.scale(bg, (scale*bg.get_width(), scale*bg.get_height()))
bg_copies = ceil(W/bg.get_width())
bgs.append(bg)
bgsX.append( [x*bg.get_width() for x in range(bg_copies+3)] )
# Load and prepare background city sprites for parallax effect
city_bgs = []
city_bgsX = []
city_parallax_speed = [0.9,0.95,1]
city_bgYs = [1,0,-1]
for n in range(3,0,-1):
bg = pygame.image.load(os.path.join('assets', f'city_parallax_{n}.png')).convert_alpha()
scale = 1
bg = pygame.transform.scale(bg, (scale*bg.get_width(), scale*bg.get_height()))
bg_copies = ceil(W/bg.get_width())
city_bgs.append(bg)
city_bgsX.append( [x*bg.get_width() for x in range(bg_copies+3)] )
# Load environmental sprites
cloud_image = pygame.image.load(os.path.join('assets', f'cloud1.png')).convert_alpha()
airport_image_og = pygame.image.load(os.path.join('assets', f'airport.png')).convert_alpha()
crash_image_og = pygame.image.load(os.path.join('assets', f'crash.png')).convert_alpha()
# Load the plane sprites
plane_sprite_og = pygame.image.load(os.path.join('assets', 'plane_gear_down.png'))
plane_sprite_og = pygame.transform.flip(plane_sprite_og,True,False)
plane2_sprite_og = pygame.image.load(os.path.join('assets', 'plane_gear_up.png'))
plane2_sprite_og = pygame.transform.flip(plane2_sprite_og,True,False)
# Color definitions
background_sky_color = (87, 184, 250)
white = (255,255,255)
grey = (92,94,93)
yellow = (239,166,35)
green = (0,154,23)
brown = (128, 96, 67)
#=========================================================================================================
# Natural constants
speed_sound = 340.3 # m/s
gravitation = 9.81 # m/s^2
air_density_sea_level = 1.225 # kg/m^3
class Plane(object):
"""
Represents an aircraft in a flight simulator.
Attributes:
x : int
x-coordinate in pixels of the top-left corner of the bounding box of the Plane.
y : int
y-coordinate in pixels of the top-left corner of the bounding box of the Plane.
width : int
Width in pixels of the bounding box of the Plane.
height : int
Height in pixels of the bounding box of the Plane.
vertical_speed : float
Vertical speed of the Plane in m/s.
horizontal_speed : float
Horizontal speed of the Plane in m/s.ddd
altitude : float
Altitude of the Plane in m.
position : float
Position of the Plane in m.
slope : float
Slope of the Plane in deg.
angle_of_attack : float
Angle of attack of the Plane in deg.
pitch : float
Pitch of the Plane in deg.
thrust_level : float
Thrust level of the Plane.
gear_down : bool
Indicates whether the gear of the Plane is down.
flap_deflection : float
Flap deflection angle of the Plane in deg.
mass_aircraft : float
Mass of the Plane in kg.
mass_fuel : float
Mass of the Plane's fuel in kg.
thrust_specific_fuel_consumption : float
Thrust-specific fuel consumption coefficient in kg/(N*s).
length : float
Length of the Plane in m.
front_surface : float
Front surface of the Plane in m^2.
wings_surface : float
Wings surface of the Plane in m^2.
engines :int
Number of engines of the Plane.
engine_thrust : float
Thrust of the Plane's engines in N.
max_speed : float
Maximum speed of the Plane in m/s.
critic_match : float
Critical mach number of the Plane.
friction_coefficient : float
Friction coefficient of the Plane.
critical_crash_energy :float
Critical crash energy of the Plane in J.
tail_strike_pitch : float
Tail strike pitch of the Plane in deg.
gear_down_sprite :str
Gear-down plane sprite.
gear_up_sprite : str
Gear-up plane sprite.
crash_sprite : str
Crashed plane sprite.
crashed :bool
Indicates whether the Plane has crashed.
"""
def __init__(self, width, height):
self.x = W/4
self.y = 0
self.width = width
self.height = height
# Aircraft positioning parameters
self.vertical_speed = 0 # m/s
self.horizontal_speed = 0 # m/s
self.altitude = 0 # m
self.position = 0 # m
self.slope = 0 # deg
self.angle_of_attack = 0 # deg
# Aircraft control properties
self.pitch = 0 # deg
self.thrust_level = 0
self.gear_down = True
self.flap_deflection = 0 # deg
self.spoilers = False
self.brakes = False
# Aircraft technical specifications
# (default values from Airbus A320-232 technical data sheets)
self.height = 11.76 # m
self.length = 37.57 # m
self.front_surface = 12.6 # m^2
self.wings_surface = 122.6 # m^2
self.engines = 2
self.engine_thrust = 140000 # N
self.max_speed = 0.92*speed_sound # m/s
self.critic_match = 0.78 # match
self.friction_coefficient = 0.02
self.critical_crash_energy = 1323000 # J
self.tail_strike_pitch = 11.5 # deg
self.mass_aircraft = 57230 # kg
self.mass_fuel = 11608 #kg
self.thrust_specific_fuel_consumption = 0.000018 # kg/(N*s)
self.braking_deceleration = 1.70 # m/s^2
# Visual properties
self.gear_down_sprite = plane_sprite_og
self.gear_up_sprite = plane2_sprite_og
self.crash_sprite = crash_image_og
self.crashed = False
#------------------------------------------------------------
"""Total mass of the aircraft
Returns:
float: Mass in kg
"""
def mass(self):
return self.mass_aircraft+self.mass_fuel
#------------------------------------------------------------
def air_rarefaction_factor(self):
"""Approximate air density reduction factor due to altitude
Returns:
float: Air rarefaction factor
"""
return exp(-9.33*10**(-5)*self.altitude)
#------------------------------------------------------------
def air_density(self):
"""Air density around the aircraft's altitude
Returns:
float: Air density in kg/m^3
"""
return air_density_sea_level*self.air_rarefaction_factor()
#------------------------------------------------------------
def match(self,speed):
"""Convert speed in m/s to Match level.
Args:
speed (float): Speed in m/s
Returns:
float: Speed in Match
"""
return speed/speed_sound
#------------------------------------------------------------
def collinear_speed(self):
"""Speed collinear with the aircraft's direction
Returns:
float: Collinear speed in m/s
"""
return sqrt(self.horizontal_speed**2 + self.vertical_speed**2)
#------------------------------------------------------------
def drag_coefficient(self):
"""
Drag coefficient of the aircraft.
The function accounts for the effects of approaching the speed of sound on the drag coefficient.
The minimal drag coefficient is approximated approximated as a third order polynomial function
of the flap deflection angle based on Fig.12 of Ref.1.
Returns:
float: Drag coefficient
References:
[1] Hussein et al., "Aerodynamic study of slotted flap for NACA 24012 airfoil by dynamic mesh techniques and visualization flow"
Journal of Thermal Engineering 2021, 7(2), 230-239
"""
# Use angle of attack in degrees
angle_of_attack = self.angle_of_attack
# Minimal drag coefficient
# (approximated as third order polynomial function of the flap deflection angle based on Fig.12 of DOI:10.18186/thermal.871989)
Cdrag_min = 0.012*(7.867 - 0.377*self.flap_deflection + 0.046*self.flap_deflection**2 - 6.88e-04*self.flap_deflection**3)
# Compute drag coefficient at different angles of attack
Cdrag = Cdrag_min + (0.02*angle_of_attack)**2 # N
# Account for turbulence when approaching Match speeds
match_speed = self.match(self.collinear_speed())
if match_speed < self.critic_match:
return Cdrag/sqrt(1 - (match_speed**2))
else:
return Cdrag*15*(match_speed - self.critic_match) + Cdrag/sqrt(1 - (self.critic_match ** 2))
#------------------------------------------------------------
def lift_coefficient(self):
"""
Lift coefficient of the aircraft.
The function accounts for the effects of approaching the speed of sound on the lift coefficient.
The maximal lift coefficient is approximated approximated as a third order polynomial function
of the flap deflection angle based on Fig.20 of Ref.1.
Returns:
float: Lift coefficient
References:
[1] Obeid et al., "RANS Simulations of Aerodynamic Performance of NACA 0015 Flapped Airfoil"
Fluids 2017, 2(1), 2
"""
# Use angle of attack in degrees
angle_of_attack = self.angle_of_attack
# Maximal lift coefficient
# (approximated as third order polynomial function of the flap deflection angle based on Fig.20 of DOI:10.3390/fluids2010002)
Clift_max = 0.317*(3.702 + 0.159*self.flap_deflection - 3.17e-3*self.flap_deflection**2 + (2.15e-05)*self.flap_deflection**3) - 0.2
if abs(angle_of_attack) < 15:
Clift = abs(angle_of_attack)/15*Clift_max
elif abs(angle_of_attack) < 20:
Clift = (1 - abs(angle_of_attack - 15)/15)*Clift_max
else:
Clift = 0
# Account for turbulences when approaching Match speeds
match_speed = self.match(self.horizontal_speed)
M_d = self.critic_match + (1 - self.critic_match)/4
if match_speed <= self.critic_match:
return Clift
elif match_speed <= M_d:
return Clift + 0.1*(match_speed - self.critic_match)
else:
return Clift + 0.1*(M_d - self.critic_match) - 0.8*(match_speed - M_d)
#------------------------------------------------------------
def wheels_drag(self):
"""Drag factor due to the aircraft's gear.
Assumes that while gear is down, 25% of the drag originates from the gear [1].
Returns:
float: Gear drag factor
References:
[1] Brandt et al., "The Effects of Wheel Design on the Aerodynamic Drag of Passenger Vehicles,"
SAE Int. J. Adv. & Curr. Prac. in Mobility 1(3):1279-1299, 2019,
"""
return 1.333 if self.gear_down else 1
#------------------------------------------------------------
def drag(self):
"""Drag force acting on the airplane due to the air flowing around the wings.
Returns:
float: Drag force in N
"""
# Use angle of attack in radians
angle_of_attack = radians(self.angle_of_attack)
# Compute surface area experiencing drag
drag_surface = self.front_surface*cos(angle_of_attack) + self.wings_surface*sin(angle_of_attack)
# Account for decrease of lift if spoilers are deployed
spoilers_drag_factor = 1
if self.spoilers:
spoilers_drag_factor = 2.5
# Compute drag
return self.wheels_drag()*1/2*self.air_density()*self.drag_coefficient()*drag_surface*self.collinear_speed()**2*spoilers_drag_factor
#------------------------------------------------------------
def lift(self):
"""Lift force acting on the airplane due to the air flowing around the wings.
Returns:
float: Lift force in N
"""
# Use angle of attack in radians
angle_of_attack = radians(self.angle_of_attack)
# Compute surface area experiencing drag
lift_surface = self.front_surface*sin(angle_of_attack) + self.wings_surface*cos(angle_of_attack)
# Account for decrease of lift if spoilers are deployed
spoilers_lift_factor = 1
if self.spoilers:
spoilers_lift_factor = 0.5
# Compute lift
return 1/2*self.air_density()*self.lift_coefficient()*lift_surface*self.horizontal_speed**2*spoilers_lift_factor
#------------------------------------------------------------
def thrust(self):
"""Thrust force acting on the airplane due to the engines.
Returns:
float: Thrust force in N
"""
return self.thrust_level*self.engines*self.engine_thrust*self.air_rarefaction_factor()
#------------------------------------------------------------
def weight(self):
"""Weight force acting on the airplane due to gravity.
Returns:
float: Weight force in N
"""
return self.mass()*gravitation # kg*m/s^2
#------------------------------------------------------------
def friction_wheels(self):
"""Friction force acting on the airplane while the gear touches the ground.
Only accounts for dynamic friction (not static).
Returns:
float: Weight force in N
"""
if self.gear_down and self.altitude==0 and self.horizontal_speed>0:
return self.friction_coefficient*self.weight()
else:
return 0
#------------------------------------------------------------
def horizontal_force(self):
"""Total horizontal force being subjected onto the airplane based on Newton's second law.
Returns:
float: Net horizontal force in N
"""
# Use angles in radians
pitch = radians(self.pitch)
slope = radians(self.slope)
# Apply Newton's second law to the horizontal force components
return cos(pitch)*self.thrust() - cos(slope)*self.drag() - sin(pitch)*self.lift() - self.friction_wheels()
#------------------------------------------------------------
def vertical_force(self):
"""Total vertical force being subjected onto the airplane based on Newton's second law.
Returns:
float: Net vertical force in N
"""
# Use angles in radians
pitch = radians(self.pitch)
slope = radians(self.slope)
# Apply Newton's second law to the vertical force components
return sin(pitch)*self.thrust() - sin(slope)*self.drag() + cos(pitch)*self.lift() - self.weight()
#------------------------------------------------------------
def update(self, screen):
"""
Update the state of the aircraft.
"""
# Burn fuel
fuel_consumption = self.thrust_specific_fuel_consumption*self.thrust()*Δt
self.mass_fuel -= fuel_consumption
# If there is not fuel left, there is not thrust
if self.mass_fuel<=0:
self.mass_fuel = 0
self.thrust_level = 0
# If the plane is moving, update the slope angle
if self.collinear_speed()>0:
self.slope = degrees(asin(self.vertical_speed/self.collinear_speed()))
else:
self.slope = 0
# Update the angle of attack
self.angle_of_attack = self.pitch - self.slope
# Compute the current forces acting on the plane
horizontal_acceleration = self.horizontal_force()/self.mass()
vertical_acceleration = self.vertical_force()/self.mass()
if self.brakes and self.altitude==0 and self.horizontal_speed>0:
horizontal_acceleration = horizontal_acceleration - self.braking_deceleration
if self.brakes and self.altitude==0 and self.horizontal_speed<0:
horizontal_acceleration = horizontal_acceleration + self.braking_deceleration
# Compute the acceleration vectors
self.horizontal_speed += horizontal_acceleration*Δt
self.vertical_speed += vertical_acceleration*Δt
# Update the position of plane
self.position += self.horizontal_speed*Δt # m
self.altitude += self.vertical_speed*Δt # m
# If the plane is on the ground, it cannot descend or accelerate further down
if self.altitude<0 and self.vertical_speed<0:
kinetic_energy = 1/2*self.mass()*self.vertical_speed**2
if kinetic_energy>self.critical_crash_energy:
self.crashed = True
self.altitude = 0
self.vertical_speed = 0
# If the plane exceeds the maximal speed it breaks due to air forces
if self.altitude==0 and self.pitch>self.tail_strike_pitch:
self.crashed = True
# If the plane exceeds the maximal speed it breaks due to air forces
if self.collinear_speed()>self.max_speed:
self.crashed = True
# If the plane if on the ground, it cannot physically pitch nose down
if self.altitude==0 and self.pitch<0:
self.pitch=0
# If the plane if on the ground, it cannot physically pitch more than 15deg without the tail touching the ground
if self.altitude==0 and self.pitch>self.tail_strike_pitch:
self.pitch=self.tail_strike_pitch
self.y = altitude_to_pixel(self.altitude*vertical_scroll_factor)
if self.y<static_altitude_point:
self.y = static_altitude_point
# Prepare the plane's sprite
if self.gear_down:
original_sprite = self.gear_down_sprite # Plane with wheels
else:
original_sprite = self.gear_up_sprite # Plane without wheels
if self.crashed:
draw_sprite(self.crash_sprite,self.position,0)
return
# Compute the pivot point (i.e. back wheels of the plane)
pivot_wheels_pos = (self.x+plane_size[0]-plane_size[0]*2.8/5, self.y+plane_size[1]-plane_size[1]/5)
# Perform rotation of the plane about the back wheels
image_rect = original_sprite.get_rect(topleft = (self.x, self.y))
# Compute a vector from the pivot to the center of the sprite
self.rect = original_sprite.get_rect(center=(self.x + plane_size[0]/2, self.y + plane_size[1]/2))
vector_center_to_pivot = pygame.math.Vector2(pivot_wheels_pos) - image_rect.center
rotated_offset = vector_center_to_pivot.rotate(-self.pitch)
rotated_image_center = (pivot_wheels_pos[0] - rotated_offset.x, pivot_wheels_pos[1] - rotated_offset.y)
rotated_sprite = pygame.transform.rotozoom(original_sprite, self.pitch, 1)
rotated_image_rect = rotated_sprite.get_rect(center = rotated_image_center)
self.rect = rotated_sprite.get_rect(center=self.rect.center)
screen.blit(rotated_sprite, rotated_image_rect)
#=========================================================================================================
#=========================================================================================================
def endScreen(message, gameover):
"""
Displays either a 'Game Over' or 'Success' message on the screen depending on the outcome of the game.
The screen displays the message until the user closes the window or clicks on the screen.
Arguments:
message : string
The reason for the game ending
gameover : boolean
Determines if the game has ended with success or failure
"""
global run
while run:
pygame.time.delay(2)
for event in pygame.event.get():
if event.type == pygame.QUIT:
run = False
pygame.quit()
if event.type == pygame.MOUSEBUTTONDOWN:
run = False
largeFont = pygame.font.SysFont('consolas', 80)
mediumFont = pygame.font.SysFont('consolas', 30)
if gameover:
GameOver = largeFont.render('Game Over',1,white)
Reason = mediumFont.render(message,1,white)
else:
GameOver = largeFont.render('Success',1,white)
Reason = mediumFont.render(message,1,white)
screen.blit(GameOver, (W/2 - GameOver.get_width()/2, H/2))
screen.blit(Reason, (W/2 - Reason.get_width()/2, H/2-50))
pygame.display.update()
#=========================================================================================================
#=========================================================================================================
def draw_surface(x, y, length, height, color, transparent=False):
"""Draws a surface of given color on the screen
Arguments:
x : float
Position of the surface in meters
y : float
Altitude of the surface in meters
length : float
Length of the surface in meters
height : float
Height of the surface in meters
color : tuple or list
Color of the surface in RGB format
"""
# If surface is out of screen bounds, do not render
if x>position_range_screen[1] or (x+length)<position_range_screen[0] or y>altitude_range_screen[1] or (y+height)<altitude_range_screen[0]:
return
# Compute positions and sizes of surface
posX = (x - position_range_screen[0])/pixel_to_length # pixels
posY = H - (y - altitude_range_screen[0])/pixel_to_height # pixels
length = length/pixel_to_length
height = height/pixel_to_height
# Draw the surface at ground level
if transparent:
surface = pygame.Surface((length,height))
surface.set_alpha(150)
surface.fill(color)
screen.blit(surface, (posX,posY))
else:
pygame.draw.rect(screen, color, (posX, posY, length, height))
#=========================================================================================================
#=========================================================================================================
def draw_sprite(sprite, x, y):
"""Draws a sprite on the screen
Arguments:
sprite : PyGame.Image
The sprite to draw
x : float
Position of the sprite in meters
y : Altitude of the sprite in meters
"""
# If sprite is out of screen bounds, do not render
if x>position_range_screen[1] or (x+sprite.get_width())<position_range_screen[0] or y>altitude_range_screen[1] or (y+sprite.get_height())<altitude_range_screen[0]:
return
# Compute positions and sizes of surface
posX = (x - position_range_screen[0])/pixel_to_length # pixels
posY = H - (y - altitude_range_screen[0])/pixel_to_height -sprite.get_height() # pixels
# Draw the surface at ground level
screen.blit(sprite, (posX, posY))
#=========================================================================================================
#=========================================================================================================
def landed_on_airport(plane):
"""Determines if a plane has landed on an airport
Arguments:
plane -- The plane object to check
"""
for n,airport_start in enumerate(AIRPORTS):
if abs(plane.position)>=airport_start and abs(plane.position)<=(airport_start+RUNWAY_LENGTH):
return n+1
return False
#=========================================================================================================
#=========================================================================================================
def draw_background(sprite, parallax_X, altitude):
"""Draws a background sprite on the screen
Arguments:
sprite : PyGame.Image
The background sprite to draw
parallax_X : float
X coordinate of the background sprite in pixels
altitude : float
Altitude of the background sprite in meters
"""
# Compute position
posY = H - (altitude - vertical_scroll_factor*altitude_range_screen[0])/pixel_to_height -sprite.get_height() # pixels
# Draw the surface at ground level
screen.blit(sprite, (parallax_X, posY))
#=========================================================================================================
#=========================================================================================================
def updateScreen():
"""
Updates the screen at every frame
"""
# Draw solid colored background (required)
screen.fill(background_sky_color)
# Draw parallax background
for bg,bgX,bgY in zip(bgs,bgsX,bgYs):
for x in bgX:
draw_background(bg, x, bgY)
# Draw parallax city background
for bg,bgX,bgY in zip(city_bgs,city_bgsX,city_bgYs):
for x in bgX:
draw_background(bg, x, bgY)
# Draw airports
for n,airport_position in enumerate(AIRPORTS):
# Draw the airport terminal
if n>0:
draw_sprite(airport_image, x=airport_position+RUNWAY_LENGTH-300, y=RUNWAY_HEIGHT*3/4)
else:
draw_sprite(airport_image, x=airport_position+100, y=RUNWAY_HEIGHT*3/4)
# Draw the runway
draw_surface(x=airport_position-CITY_EXTENSION, y=RUNWAY_HEIGHT*3/4, length=RUNWAY_LENGTH+20+2*CITY_EXTENSION, height=2*RUNWAY_HEIGHT, color=(210,210,210))
draw_surface(x=airport_position, y=RUNWAY_HEIGHT*3/4, length=RUNWAY_LENGTH+20, height=2*RUNWAY_HEIGHT, color=(194,194,194))
draw_surface(x=airport_position, y=RUNWAY_HEIGHT/2, length=RUNWAY_LENGTH, height=2*RUNWAY_HEIGHT, color=grey)
for n in range(round(RUNWAY_LENGTH/15/2)):
draw_surface(x=airport_position + 2*n*15 + 2, y=0.25, length=15, height=0.5, color=yellow)
for n in range(5):
draw_surface(x=airport_position+2, y=RUNWAY_HEIGHT/2 - 2*n - 0.25, length=MARKINGS_LENGTH/2, height=0.5, color=yellow)
draw_surface(x=airport_position+RUNWAY_LENGTH-MARKINGS_LENGTH, y=RUNWAY_HEIGHT/2 - 2*n - 0.25, length=MARKINGS_LENGTH/2 - 2, height=0.5, color=yellow)
# Draw the plane's shadow
if not plane.crashed:
shadow_start = 0.05*plane.length + position_range_screen[0] + (plane.x/W)*(position_range_screen[1] - position_range_screen[0])
shadow_length = 0.9*plane.length*cos(radians(plane.pitch))
draw_surface(x=shadow_start, y=0.15, length=shadow_length, height=0.3, color=(20,20,20), transparent=True)
# Draw clouds
for cloud in clouds:
draw_sprite(cloud['image'], x=cloud['position'], y=cloud['altitude'])
# Update flight status and update the sprite
plane.update(screen)
# Display game over if the plane has crashed
if plane.crashed:
endScreen('The aircraft crashed', gameover=True)
elif plane.altitude==0 and not landed_on_airport(plane):
endScreen('The aircraft landed outside of a runway', gameover=True)
# Font renderers
largeFont = pygame.font.SysFont('consolas', 17)
if plane.slope<0:
touchdown_prediction = cos(plane.slope)*plane.collinear_speed()*(-plane.altitude/sin(plane.slope)/plane.collinear_speed())
touchdown_prediction = f'{touchdown_prediction:.0f}'
else:
touchdown_prediction = '-'
nearest_runway_distance = min([airport-plane.position for airport in AIRPORTS if (airport-plane.position)>0])
gear = 'Down' if plane.gear_down else 'Up'
spoilers = 'Deployed' if plane.spoilers else 'Retracted'
# Add plane flight control indicators
flight_indicators = []
flight_indicators.append(largeFont.render(f'Thrust: {plane.thrust_level*100:.0f} %', 1, white))
flight_indicators.append(largeFont.render(f'Flaps: {plane.flap_deflection:.0f}°', 1, white))
flight_indicators.append(largeFont.render(f'Pitch: {plane.pitch:.1f}°', 1, white))
flight_indicators.append(largeFont.render(f'H.Speed: {plane.horizontal_speed:.1f} m/s', 1, white))
flight_indicators.append(largeFont.render(f'V.Speed: {plane.vertical_speed:.1f} m/s', 1, white))
flight_indicators.append(largeFont.render(f'AOA: {plane.angle_of_attack:.1f}°', 1, white))
flight_indicators.append(largeFont.render(f'Altitude: {plane.altitude:.1f} m', 1, white))
flight_indicators.append(largeFont.render(f'Position: {plane.position:.1f} m', 1, white))
flight_indicators.append(largeFont.render(f'Fuel: {plane.mass_fuel:.0f} kg', 1, white))
flight_indicators.append(largeFont.render(f'Spoilers: {spoilers}', 1, white))
flight_indicators.append(largeFont.render(f'Gear: {gear}', 1, white))
flight_indicators.append(largeFont.render(f'Next runway: {nearest_runway_distance:.0f} m', 1, white))
#flight_indicators.append(largeFont.render(f'Touchdown: {touchdown_prediction} m', 1, white))
# Grey transparent background for indicators
panel_width = max([indicator.get_width() for indicator in flight_indicators])
s = pygame.Surface((0.02*W+panel_width,30+len(flight_indicators)*25))
s.set_alpha(150)
s.fill(grey)
screen.blit(s, (0,0))
for n,indicator in enumerate(flight_indicators):
screen.blit(indicator, (0.01*W, 15+n*25))
# Add objectives
panel_width = max([largeFont.size(objective)[0] for objective in objectives])
screen.blit(largeFont.render('Objectives:', 1, white), (W - panel_width - 100, 15))
for n,(objective,condition) in enumerate(zip(objectives,conditions)):
objective_display = largeFont.render(objective, 1, white)
width = 2
if condition(plane):
width = 0
conditions[n] = lambda _: True
pygame.draw.rect(screen, white, (W-panel_width-80, 45+n*20, 15, 15), width=width)
screen.blit(objective_display, (W-panel_width-50, 45+n*20))
# Check if all objectives have been fulfilled, if so end the game
if all([condition(plane) for condition in conditions]):
endScreen('The aircraft has successfully landed', gameover=False)
# Update the screen with new frame
pygame.display.update()
#=========================================================================================================
#=========================================================================================================
def altitude_to_pixel(altitude):
"""Convert coordinates into pygame coordinates (lower-left => top left)."""
scale = (altitude)/(H*pixel_to_height)
return takeoff_height- scale*H
#=========================================================================================================
#=========================================================================================================
def screen_configuration(W,H):
"""
This function sets up the screen configuration for the simulation at a given resolution.
Parameters:
W : int
Width of the screen in pixels
H : int
Height of the screen in pixels
"""
global plane, plane_size, airport_image
global static_altitude_point, takeoff_height
global position_range_screen, altitude_range_screen, pixel_to_length, pixel_to_height, takeoff_height
# Define screen height at which to make sprite static
static_altitude_point = H/3
# Determine the plane's sprite size
ZOOM_OUT = 2.8
plane_default_size = plane_sprite_og.get_size()
plane_size = [x/ZOOM_OUT for x in plane_default_size]
if plane is None:
# Construct the aircraft
plane = Plane(*plane_default_size)
# Rescale the sprites
plane.gear_down_sprite = pygame.transform.scale(plane_sprite_og, plane_size)
plane.gear_up_sprite = pygame.transform.scale(plane2_sprite_og, plane_size)
plane.crash_sprite = pygame.transform.scale(crash_image_og, (2*plane_size[0],plane_size[0]))
airport_image = pygame.transform.scale(airport_image_og, [x/9 for x in airport_image_og.get_size()])
# Map the physically-realistic distances in pixels
pixel_to_length = plane.length/plane_size[0]
pixel_to_height = plane.height/plane_size[1]
# Map the range of distances/altitudes on the current screen
position_range_screen = (0, W*pixel_to_length)
altitude_range_screen = (-GROUND_HEIGHT, H*pixel_to_height)
# Determine the start position of the plane's sprite
takeoff_height = H - GROUND_HEIGHT/pixel_to_height - 4/5*plane_size[1]
if plane is None:
plane.x = W
plane.y = takeoff_height
#=========================================================================================================
# Start running the game
#------------------------------------------
run = True
plane = None
clock = pygame.time.Clock()
# Configure screen to current resolution
screen_configuration(W,H)
# Define the game's objectives
objectives,conditions = [],[]
objectives.append('Takeoff from the airport')
conditions.append(lambda plane: plane.altitude>40)
target_altitude = round(randint(1000,3000),-2)
objectives.append(f'Reach an altitude of {target_altitude} m')
conditions.append(lambda plane: plane.altitude>=target_altitude)
objectives.append('Land on an airport')
conditions.append(lambda plane: landed_on_airport(plane)>1 and abs(plane.horizontal_speed)<5)
pause = 0
clouds = []
bgY = 0
frame = 0
last_frame = 0
flap_delay = 0
# Main game loop
#------------------------------------------
while run:
# Get simulation time step
Δt = clock.tick(FPS)/1000
frame += 1
if (round(frame/FPS,1) % 1) == 0:
N_new_clouds = randint(1,4)
for n in range(N_new_clouds):
cloud = {
'position': randint(round(position_range_screen[1]), round(1.5*position_range_screen[1])),
'altitude': randint(round(0.5*altitude_range_screen[1]), round(altitude_range_screen[1])),
'image': pygame.transform.scale(cloud_image,[x*randint(1,4) for x in cloud_image.get_size()]),
'speed': 1/randint(1,8)
}
if cloud['altitude']>250:
clouds.append(cloud)
positional_change = plane.horizontal_speed*Δt
position_range_screen = [x+positional_change for x in position_range_screen]
clouds = [cloud for cloud in clouds if (cloud['position']+cloud['image'].get_width())>position_range_screen[0]]
if plane.y<=static_altitude_point:
altitude_change = plane.vertical_speed*Δt
altitude_range_screen = [y+altitude_change for y in altitude_range_screen]
bgY -= altitude_change/100
for n,(bg,bgXs,speed) in enumerate(zip(bgs,bgsX,parallax_speed)):
for m,bgX in enumerate(bgXs):
bgX -= speed*positional_change/pixel_to_length
if bgX <= bg.get_width()*(m-2):
bgX = (m)*bg.get_width() + 0*abs(m*bg.get_width() - abs(bgX))
bgsX[n][m] = bgX
close_to_airports = [plane.position>(airport-CITY_EXTENSION/2) and plane.position<(airport+RUNWAY_LENGTH+CITY_EXTENSION/2-city_bgs[0].get_width()) for airport in AIRPORTS]
arriving_to_airports = [position_range_screen[1]>(airport-CITY_EXTENSION-100) and position_range_screen[1]<(airport-CITY_EXTENSION) for airport in AIRPORTS]
for n,(bg,bgXs,speed) in enumerate(zip(city_bgs,city_bgsX,city_parallax_speed)):
for m,bgX in enumerate(bgXs):
bgX -= speed*positional_change/pixel_to_length
if any(close_to_airports):
if bgX <= bg.get_width()*(m-2):
bgX = (m)*bg.get_width() + 0*abs(m*bg.get_width() - abs(bgX))
if any(arriving_to_airports):
bgX = W + m*bg.get_width()
city_bgsX[n][m] = bgX
# Event handler
for event in pygame.event.get():
if event.type == pygame.QUIT:
# Exit the game and stop the execution
pygame.quit()
run = False
elif event.type == pygame.VIDEORESIZE:
# Get new screen size
W, H = event.dict["size"]
# Recreate screen object required for pygame version
screen = pygame.display.set_mode((W, H), pygame.RESIZABLE)
# Reconfigure screen to current resolution
screen_configuration(W,H)
# Check user input(s)
keys = pygame.key.get_pressed()
# Thrust control
#------------------------------------------
if keys[pygame.K_UP]:
if plane.thrust_level<1:
plane.thrust_level += 0.006
if keys[pygame.K_DOWN]:
# Usually, do not allow reverse thrust
if plane.thrust_level>0:
plane.thrust_level -= 0.006
# If on the ground, allow thrust-reversal
if plane.thrust_level<=0 and plane.altitude==0 and plane.thrust_level>-1:
plane.thrust_level -= 0.006
# Pitch control
#------------------------------------------
if keys[pygame.K_LEFT]:
plane.pitch += 0.04
if keys[pygame.K_RIGHT]:
plane.pitch -= 0.04
# Gear control
#------------------------------------------
if keys[pygame.K_w]:
if abs(frame-last_frame)>15:
if plane.gear_down and plane.altitude>0:
plane.gear_down = False
else:
plane.gear_down = True
last_frame = frame
# Spoilers control
#------------------------------------------
if keys[pygame.K_s]:
plane.spoilers = True
else:
plane.spoilers = False
# Brakes control
#------------------------------------------
if keys[pygame.K_d]:
plane.brakes = True
else:
plane.brakes = False
# Flaps control
#------------------------------------------
if keys[pygame.K_q]:
if plane.flap_deflection<50:
plane.flap_deflection += 0.08
if keys[pygame.K_a]:
if plane.flap_deflection>0:
plane.flap_deflection -= 0.08
# Refresh the display
updateScreen()
pygame.quit()