-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_facial_recognition.py
51 lines (41 loc) · 1.4 KB
/
train_facial_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import cv2
import os
import numpy as np
data_dir = "data"
people_list = os.listdir(data_dir)
model_dir = "model"
# model_name = "modelEigenFace.xml"
# model_name = "modelFisherFace.xml"
model_name = "modelLBPHFace.xml"
model_path = os.path.join(model_dir, model_name)
print("People list:", people_list)
if not os.path.exists(model_dir):
print("Folder created successfully: ", model_dir)
os.makedirs(model_dir)
labels = []
faces_data = []
label = 0
for name_dir in people_list:
person_path = os.path.join(data_dir, name_dir)
print("\nReading images...\n")
for file_name in os.listdir(person_path):
print("Faces: ", os.path.join(name_dir, file_name))
labels.append(label)
faces_data.append(cv2.imread(os.path.join(person_path, file_name), 0))
# image = cv2.imread(os.path.join(person_path, file_name), 0)
# cv2.imshow("image", image)
# cv2.waitKey(10)
label += 1
# print("labels=", labels)
# print("Labels number 0: ", np.count_nonzero(np.array(labels)==0))
# print("Labels number 1: ", np.count_nonzero(np.array(labels)==1))
# methods to train recognizer
# face_recognizer = cv2.face.EigenFaceRecognizer_create()
# face_recognizer = cv2.face.FisherFaceRecognizer_create()
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
# training face recognizer
print("\nTraining...")
face_recognizer.train(faces_data, np.array(labels))
# saving generated model
face_recognizer.write(model_path)
print("\nModel saved")