forked from saisunku/CLRS-Python-Implementations
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsorting.py
371 lines (282 loc) · 10.1 KB
/
sorting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# -*- coding: utf-8 -*-
"""
Created on Sun Sep 8 12:42:29 2019
@author: Sai
"""
import math
import random
# 9/8/2019
# Insertion sort - Pg 18 CLRS
def insertion_sort(array):
for (idx, key) in enumerate(array[1:]):
i = idx # Even though i and idx are equal, key = a[i+1]
while i > -1 and array[i] > key:
array[i+1] = array[i]
i = i - 1
array[i+1] = key
return array
array = [5, 2, 4, 6, 1, 3]
#print(insertion_sort(array))
assert insertion_sort(array) == [1, 2, 3, 4, 5, 6]
array = [31, 41, 59, 26, 41, 58]
#print(insertion_sort(array))
assert insertion_sort(array) == [26, 31, 41, 41, 58, 59]
# Insertion sort in nonascending order - Pg 22 CLRS - Exercise 2.1.2
def insertion_sort_descending(array):
for (idx, key) in enumerate(array[1:]):
i = idx # Even though i and idx are equal, key = a[i+1]
while i > -1 and array[i] < key:
array[i+1] = array[i]
i = i - 1
array[i+1] = key
return array
array = [5, 2, 4, 6, 1, 3]
#print(insertion_sort_descending(array))
assert insertion_sort_descending(array) == [6, 5, 4, 3, 2, 1]
array = [31, 41, 59, 26, 41, 58]
#print(insertion_sort_descending(array))
assert insertion_sort_descending(array) == [59, 58, 41, 41, 31, 26]
# Mergesort - Pg 31-34 CLRS
# First write the merge function and show that it works
def merge(array, p, q, r):
left = array[p:q+1]
right = array[q+1:r+1]
left.append(float('inf'))
right.append(float('inf'))
# print(left, right)
i = 0; j = 0;
for k in range(r-p+1):
if left[i] <= right[j]:
array[k+p] = left[i]
i += 1
else:
array[k+p] = right[j]
j += 1
return array
array = [1, 2, 4, 7, 3, 6, 9, 12]
#print(merge(array, 0, 3, len(array)-1))
assert merge(array, 0, 3, len(array)-1) == [1, 2, 3, 4, 6, 7, 9, 12]
# The merge sort itself is pretty simple
def merge_sort(array, p=0, r=None):
if r == None:
r = len(array)-1
if p < r:
q = math.floor((r+p)/2)
merge_sort(array, p, q)
merge_sort(array, q+1, r)
# print('p, r: ', p, r)
merge(array, p, q, r)
# print(array)
return array
array = [5, 2, 4, 6, 1, 3]
#print(merge_sort(array))
assert merge_sort(array) == [1, 2, 3, 4, 5, 6]
array = [31, 41, 59, 26, 41, 58]
#print(merge_sort(array))
assert merge_sort(array) == [26, 31, 41, 41, 58, 59]
# Heapsort - Chapter 6 CLRS
# First define heap object
class heap(object): # Heap class
def __init__(self, A):
# Initializing with an array automatically builds the heap
self.heap = A # Array representation of the heap
self.heap_size = len(self.heap)-1 # Index where the heap ends. Default is the last element
for j in range(math.floor(len(self.heap)/2)-1, -1, -1):
# print(j)
self.max_heapify(j)
def max_heapify(self, j):
# print(j)
l = self.left(j)
r = self.right(j)
# print(j)
largest = j
if l <= self.heap_size and self.heap[l] > self.heap[j]:
largest = l
if r <= self.heap_size and self.heap[r] > self.heap[largest]:
largest = r
if largest != j:
tmp = self.heap[largest]
self.heap[largest] = self.heap[j]
self.heap[j] = tmp
self.max_heapify(largest)
# print(j)
# print(self.heap)
def left(self, j):
# Returns the index of the left child node
return (j << 1) + 1
def right(self, j):
# Returns the index of the right child node
return (j << 1) + 2
def draw_heap(self, spacing=2, width=2):
# Draws the heap
assert width%2 == 0
# Number of levels = 1 + height of tree
num_levels = math.floor(math.log(self.heap_size+1,2))+1
print('heap size '+str(self.heap_size+1))
print('num levels '+str(num_levels))
# Calculate the spacing and offset arrays
spacing_array = [0]*num_levels
offset_array = [0]*num_levels
spacing_array[-1] = spacing # Spacing at the last level is set to a fixed value
offset_array[-1] = 0 # Last level has no offset
# Now iterate backwards and calculate spacing and offsets for all levels
for j in range(num_levels-2, -1, -1):
spacing_array[j] = spacing_array[j+1]*2 + width # Spacing of the m-th level is twice the spacing of the m+1-th level
offset_array[j] = offset_array[j+1] + spacing_array[j+1]/2 + width # Offset of m-th level = offset of previous level + spacing of previous level/2
# Iterate backwards again and construct the string at each level
str_list = ['']*num_levels
fmt = '{:^'+str(width)+'d}'
for height in range(num_levels-1, -1, -1):
str_level = ' '*int(offset_array[height]) # First add the offset
for val in range(2**height):
if 2**height-1+val <= self.heap_size:
str_level += fmt.format(self.heap[2**height-1+val]) # Then add the number
str_level += ' '*int(spacing_array[height]) # And the space between the numbers
str_list[height] = str_level
# Now print
for height in range(num_levels):
print(str_list[height]+'\n')
return str_list
A = heap([1, 3, 9, 10, 14, 8, 2, 4, 16, 7, 36, 7, 8, 99, 12, 5, 43, 1, 1, 56, 5, 23, 67, 8, 9, 4, 65, 6, 22])
# Check that the left and right functions work as expected
assert(A.left(2)==5)
assert(A.right(1)==4)
assert(A.left(3)==7)
# Check that the heap property is maintained for all nodes
for j in range(A.heap_size+1):
l = A.left(j)
r = A.right(j)
if l <= A.heap_size:
assert A.heap[A.left(j)] <= A.heap[j]
if r <= A.heap_size:
assert A.heap[A.right(j)] <= A.heap[j]
str_list = A.draw_heap()
# Heapsort algorithm
def heapsort(array):
# Build the heap
H = heap(array)
# Take out the first element and reduce the size of the heap
for j in range(len(array)):
# Swap the largest element in the heap with the last element in the heap
tmp = H.heap[0]
H.heap[0] = H.heap[H.heap_size]
H.heap[H.heap_size] = tmp
# Decrement heap size
H.heap_size -= 1
# Max-Heapify
H.max_heapify(0)
return H.heap
array = [5, 2, 4, 6, 1, 3]
#print(heapsort(array))
assert heapsort(array) == [1, 2, 3, 4, 5, 6]
array = [31, 41, 59, 26, 41, 58]
#print(heapsort(array))
assert heapsort(array) == [26, 31, 41, 41, 58, 59]
# Quicksort - Chapter 7 CLRS
# First define the partioning function
def partition(A, p=0, r=None):
# Partition the array A[p:r] for use with Quicksort
if r == None:
r = len(A)-1
i = p - 1
for j_iter in range(r-p):
j = j_iter + p
# print(j)
# print(A)
if A[j] < A[r]:
i = i + 1
tmp = A[i]
A[i] = A[j]
A[j] = tmp
tmp = A[i+1]
A[i+1] = A[r]
A[r] = tmp
return i + 1
array = [5, 2, 4, 6, 1, 3]
partition(array)
assert array == [2, 1, 3, 6, 5, 4]
array = [2, 8, 7, 1, 3, 5, 6, 4]
partition(array)
assert array == [2, 1, 3, 4, 7, 5, 6, 8]
# Quicksort
def quicksort(A, p=0, r=None):
if r == None:
r = len(A)-1
# print(p, r)
# print(A)
if p < r:
q = partition(A, p, r)
quicksort(A, p, q-1)
quicksort(A, q+1, r)
return A
array = [5, 2, 4, 6, 1, 3]
#print(quicksort(array))
assert quicksort(array) == [1, 2, 3, 4, 5, 6]
array = [31, 41, 59, 26, 41, 58]
#print(quicksort(array))
assert quicksort(array) == [26, 31, 41, 41, 58, 59]
# Randomized partition
def partition_random(A, p=0, r=None):
if r == None:
r = len(A)-1
rand_idx = random.randint(p, r)
tmp = A[rand_idx]
A[rand_idx] = A[r]
A[r] = tmp
return partition(A, p, r)
array = [5, 2, 4, 6, 1, 3]
partition_random(array)
print(array)
def quicksort_random(A, p=0, r=None):
if r == None:
r = len(A)-1
if p < r:
q = partition_random(A, p, r)
quicksort_random(A, p, q-1)
quicksort_random(A, q+1, r)
return A
array = [5, 2, 4, 6, 1, 3]
#print(quicksort(array))
assert quicksort_random(array) == [1, 2, 3, 4, 5, 6]
array = [31, 41, 59, 26, 41, 58]
#print(quicksort(array))
assert quicksort_random(array) == [26, 31, 41, 41, 58, 59]
# Given array A of size n which contains integers from p to p+n, sort A in place
def consecutive_numbers_sort_in_place(A, p=0):
j = 0
for j in range(len(A)):
while A[j] != p+j:
pos = A[j] - p
tmp = A[pos]
A[pos] = A[j]
A[j] = tmp
return A
A = [1, 2, 4, 0, 5, 7, 6, 8, 10, 9, 3]
assert consecutive_numbers_sort_in_place(A) == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# Counting sort - Pg 195
def counting_sort(A, max_elem=None):
if max_elem == None:
max_elem = max(A)
# Initialize the output and count arrays
out = [0]*len(A)
count = [0]*(max_elem+1) # Including zeros
# Populate the count array
for val in A:
count[val] += 1
# print(count)
# Keep a running sum
for idx in range(len(count)-1):
idx = idx + 1
count[idx] = count[idx] + count[idx-1]
# print(count)
# Now sort
for idx in range(len(A)-1,-1,-1):
out[count[A[idx]]-1] = A[idx]
count[A[idx]] -= 1
return out
array = [0, 4, 5, 1, 5, 2, 3, 4, 2, 0, 0, 3, 1, 2, 4]
assert counting_sort(array) == [0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5]
array = [0, 1, 2, 5, 6, 9, 7, 8, 4, 4, 6, 3, 8, 5, 2, 7, 9, 0, 1, 5, 7, 4, 2, 6, 9]
assert counting_sort(array) == [0, 0, 1, 1, 2, 2, 2, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 9, 9]
array = [1, 1, 1, 1, 1]
assert counting_sort(array) == [1, 1, 1, 1, 1]