-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnd_models_torch.py
281 lines (223 loc) · 9.53 KB
/
rnd_models_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
import time
from torch.utils.data import Dataset
from tqdm import tqdm
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class base_net_torch(torch.nn.Module):
def __init__(self, input_shape, action_space):
super(base_net_torch, self).__init__()
self.name = 'policy_net_torch'
self.conv_part = nn.Sequential(
nn.Conv2d(3, 32, 8),
nn.MaxPool2d(4),
nn.Tanh(),
nn.Conv2d(32, 64, 4),
nn.MaxPool2d(2),
nn.Tanh(),
nn.Conv2d(64, 64, 4),
nn.Tanh())
self.num_features = self.get_flat_fts(input_shape, self.conv_part)
self.fc1 = nn.Sequential(
nn.Linear(self.num_features, 512),
nn.Tanh(),
nn.Linear(512, action_space),
nn.Softmax(-1))
def get_flat_fts(self, in_size, model):
f = model(torch.ones(1, *in_size))
return int(np.prod(f.size()[1:]))
def forward(self, state):
x = state[:,0,:,:,:]
x.type(torch.FloatTensor)
x = x/255.0 - 0.5
x = self.conv_part(x)
x = x.view(-1, self.num_features)
x = self.fc1(x)
return x
class MyDataset(Dataset):
def __init__(self, data):
super(MyDataset, self).__init__()
self.data = data
def __getitem__(self, index):
return [torch.from_numpy(item[index]) for item in self.data]
def __len__(self):
return len(self.data[0])
def predict_torch(model, device, inputs, batch_size=30, pin_memory=False, non_blocking=True, verbose=False):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
dataset = torch.utils.data.TensorDataset(*inputs)
loader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
pin_memory=pin_memory
)
predictions = []
with torch.no_grad():
for i, batch in enumerate(tqdm(loader, ncols=130, disable=not verbose)):
pred = model(*(item.to(device, non_blocking=non_blocking) for item in batch))
pred = pred.cpu().numpy()
predictions.append(pred)
predictions = np.concatenate(predictions)
return predictions
def calc_time(function, *args, **kwargs):
print('-----------------------------------')
print(f'calculating {function} with {kwargs}')
start = time.time()
for i in range(1):
function(*args, **kwargs)
print(time.time() - start)
def evaluate_torch(inputs, model, loss_fn, batch_size=32, pin_memory=False, non_blocking=True, verbose=True, **kwargs):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
dataset = MyDataset(inputs)
loader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
pin_memory=pin_memory
)
pbar = tqdm(loader, ncols=130, disable=not verbose)
for i, batch in enumerate(pbar):
batch_input = [item.to(device, non_blocking=non_blocking) for item in batch]
batch_loss = loss_fn(batch_input, model, **kwargs)
accumulated_loss += batch_loss.numpy()
mean_loss = accumulated_loss/end
pbar.set_description('Evaluating {} '.format(model.name))
pbar.set_postfix_str('mean_loss: {:.6E}'.format(mean_loss))
return mean_loss
def train_by_batch_torch(inputs, model, loss_fn, optimizer, batch_size=32, epochs=1, pin_memory=False, non_blocking=True, verbose=True, **kwargs):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
loss_history = []
model = model.to(device)
dataset = MyDataset(inputs)
loader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
pin_memory=pin_memory
)
for epoch in range(epochs):
processed_samples = 0
accumulated_epoch_loss = 0
pbar = tqdm(loader, ncols=130, disable=not verbose)
for i, batch in enumerate(pbar):
optimizer.zero_grad()
batch_input = [item.to(device, non_blocking=non_blocking) for item in batch]
losses = loss_fn(batch_input, model, **kwargs)
processed_samples += len(losses)
loss = torch.sum(losses)
accumulated_epoch_loss += loss.item()
torch.mean(losses).backward()
optimizer.step()
mean_epoch_loss = accumulated_epoch_loss/processed_samples
pbar.set_description('Training {}, epoch {}/{}'.format(model.name, epoch+1, epochs))
pbar.set_postfix_str('mean_loss: {:.6E}'.format(mean_epoch_loss))
loss_history.append(mean_epoch_loss)
return loss_history
def train_by_epoch_torch(inputs, model, loss_fn, optimizer, batch_size=32, epochs=1, pin_memory=False, non_blocking=True, verbose=True, **kwargs):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
loss_history = []
model = model.to(device)
dataset = MyDataset(inputs)
loader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
pin_memory=pin_memory
)
for epoch in range(epochs):
processed_samples = 0
accumulated_epoch_loss = 0
optimizer.zero_grad()
pbar = tqdm(loader, ncols=130, disable=not verbose)
for i, batch in enumerate(pbar):
batch_input = [item.to(device, non_blocking=non_blocking) for item in batch]
losses = loss_fn(batch_input, model, **kwargs)
processed_samples += len(losses)
loss = torch.sum(losses)
accumulated_epoch_loss += loss.item()
loss.backward()
mean_epoch_loss = accumulated_epoch_loss/processed_samples
pbar.set_description('Training {}, epoch {}/{}'.format(model.name, epoch+1, epochs))
pbar.set_postfix_str('mean_loss: {:.6E}'.format(mean_epoch_loss))
for param in model.parameters():
param.grad /= processed_samples
optimizer.step()
loss_history.append(mean_epoch_loss)
return loss_history
def policy_loss_fn_tf(inputs, model, **kwargs):
states = inputs[0]
rewards = inputs[1]
old_policies = inputs[2]
crange = inputs[3]
policy = model(states)
policy = tf.clip_by_value(policy, old_policies-crange, old_policies+crange)
#beta= 1/2/crange
base_loss = K.sum(-rewards * policy, axis=-1)
#inertia_loss = beta * K.sum(K.abs(rewards), axis=-1) * K.sum(K.pow(policy-old_policies, 2), axis=-1)/self.action_space
#+ inertia_loss)
return base_loss
def policy_loss_fn_torch(inputs, model, **kwargs):
states = inputs[0]
rewards = inputs[1]
old_policies = inputs[2]
crange = inputs[3]
policy = model(states).double()
policy = torch.min(policy, old_policies+crange)
policy = torch.max(policy, old_policies-crange)
#policy = torch.clip(policy, old_policies-crange, old_policies+crange)
#beta= 1/2/crange
base_loss = torch.sum(-rewards * policy, dim=-1)
#inertia_loss = beta * K.sum(K.abs(rewards), axis=-1) * K.sum(K.pow(policy-old_policies, 2), axis=-1)/self.action_space
#loss = torch.sum(base_loss) #+ inertia_loss)
return base_loss
steps = 100000
width = 120
height = 84
action_space = 10
state_shape = (1, 3, height, width)
state_shape_tf = (1, height, width, 3)
mynet = base_net_torch(state_shape[1:], action_space)
states = np.ones((steps,*state_shape), dtype=np.uint8)
cranges = np.ones((steps, action_space), dtype=np.float)
rewards = np.random.rand(steps, action_space)
old_policies = np.random.rand(steps, action_space)
optimizer = optim.Adam(mynet.parameters(), lr=0.0001)
# start = time.time()
# train_by_batch_torch([states, rewards, old_policies, cranges], mynet, policy_loss_fn_torch, optimizer)
# print(time.time()-start)
# start = time.time()
# train_by_epoch_torch([states, rewards, old_policies, cranges], mynet, policy_loss_fn_torch, optimizer)
# print(time.time()-start)
import tensorflow as tf
from tensorflow.keras.optimizers import SGD, Adam
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
from rnd_models import *
from train_util import *
mynet_tf = policy_net(state_shape_tf, action_space)
states = np.transpose(states, (0,1,3,4,2))
optimizer = Adam(lr=1e-6)
start = time.time()
train_by_batch_tf([states, rewards, old_policies, cranges], mynet_tf, policy_loss_fn_tf, optimizer)
print(time.time()-start)
start = time.time()
train_by_epoch_tf([states, rewards, old_policies, cranges], mynet_tf, policy_loss_fn_tf, optimizer)
print(time.time()-start)
#predict(mynet, device, [states])
#calc_time(predict, mynet, device, [states], batch_size=2048, pin_memory=False, non_blocking=True, verbose=True)
# import tensorflow as tf
# states = states.permute(0,1,3,4,2).numpy()
# print(states.shape)
# gpus = tf.config.experimental.list_physical_devices('GPU')
# for gpu in gpus:
# tf.config.experimental.set_memory_growth(gpu, True)
# from rnd_models import *
# from train_util import *
# mynet_tf = policy_net(state_shape_tf, action_space)
# start = time.time()
# mynet_tf.predict(states, batch_size=2048, verbose=False)
# print(time.time() - start)
# for elem in loader:
# print(type(elem), elem[0].shape)